Kumar Pawan, Bartoszek Allison E, Moran Thomas M, Gorski Jack, Bhattacharyya Sanjib, Navidad Jose F, Thakar Monica S, Malarkannan Subramaniam
Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute.
J Vis Exp. 2012 Feb 4(60):3623. doi: 10.3791/3623.
Influenza virus is a respiratory pathogen that causes a high degree of morbidity and mortality every year in multiple parts of the world. Therefore, precise diagnosis of the infecting strain and rapid high-throughput screening of vast numbers of clinical samples is paramount to control the spread of pandemic infections. Current clinical diagnoses of influenza infections are based on serologic testing, polymerase chain reaction, direct specimen immunofluorescence and cell culture (1,2). Here, we report the development of a novel diagnostic technique used to detect live influenza viruses. We used the mouse-adapted human A/PR/8/34 (PR8, H1N1) virus (3) to test the efficacy of this technique using MDCK cells (4). MDCK cells (10(4) or 5 x 10(3) per well) were cultured in 96- or 384-well plates, infected with PR8 and viral proteins were detected using anti-M2 followed by an IR dye-conjugated secondary antibody. M2 (5) and hemagglutinin (1) are two major marker proteins used in many different diagnostic assays. Employing IR-dye-conjugated secondary antibodies minimized the autofluorescence associated with other fluorescent dyes. The use of anti-M2 antibody allowed us to use the antigen-specific fluorescence intensity as a direct metric of viral quantity. To enumerate the fluorescence intensity, we used the LI-COR Odyssey-based IR scanner. This system uses two channel laser-based IR detections to identify fluorophores and differentiate them from background noise. The first channel excites at 680 nm and emits at 700 nm to help quantify the background. The second channel detects fluorophores that excite at 780 nm and emit at 800 nm. Scanning of PR8-infected MDCK cells in the IR scanner indicated a viral titer-dependent bright fluorescence. A positive correlation of fluorescence intensity to virus titer starting from 10(2)-10(5) PFU could be consistently observed. Minimal but detectable positivity consistently seen with 10(2)-10(3) PFU PR8 viral titers demonstrated the high sensitivity of the near-IR dyes. The signal-to-noise ratio was determined by comparing the mock-infected or isotype antibody-treated MDCK cells. Using the fluorescence intensities from 96- or 384-well plate formats, we constructed standard titration curves. In these calculations, the first variable is the viral titer while the second variable is the fluorescence intensity. Therefore, we used the exponential distribution to generate a curve-fit to determine the polynomial relationship between the viral titers and fluorescence intensities. Collectively, we conclude that IR dye-based protein detection system can help diagnose infecting viral strains and precisely enumerate the titer of the infecting pathogens.
流感病毒是一种呼吸道病原体,每年在世界多个地区都会导致高度的发病率和死亡率。因此,准确诊断感染毒株并对大量临床样本进行快速高通量筛查对于控制大流行性感染的传播至关重要。目前流感感染的临床诊断基于血清学检测、聚合酶链反应、直接标本免疫荧光和细胞培养(1,2)。在此,我们报告了一种用于检测活流感病毒的新型诊断技术的开发。我们使用适应小鼠的人A/PR/8/34(PR8,H1N1)病毒(3),利用MDCK细胞(4)测试该技术的有效性。将MDCK细胞(每孔10⁴或5×10³个)接种于96孔或384孔板中,用PR8感染,然后使用抗M2抗体检测病毒蛋白,接着用红外染料偶联的二抗进行检测。M2(5)和血凝素(1)是许多不同诊断检测中使用的两种主要标志物蛋白。使用红外染料偶联的二抗可将与其他荧光染料相关的自发荧光降至最低。使用抗M2抗体使我们能够将抗原特异性荧光强度用作病毒量的直接指标。为了测定荧光强度,我们使用了基于LI-COR Odyssey的红外扫描仪。该系统使用两个基于激光的红外检测通道来识别荧光团并将其与背景噪声区分开来。第一个通道在680nm激发,在700nm发射以帮助量化背景。第二个通道检测在780nm激发并在800nm发射的荧光团。在红外扫描仪中对PR8感染的MDCK细胞进行扫描显示出病毒滴度依赖性的明亮荧光。从10² - 10⁵ PFU开始,荧光强度与病毒滴度呈正相关,可以持续观察到。在10² - 10³ PFU PR8病毒滴度下始终可见最小但可检测到的阳性,这证明了近红外染料的高灵敏度。通过比较未感染或用同型抗体处理的MDCK细胞来确定信噪比。利用96孔或384孔板形式的荧光强度,我们构建了标准滴定曲线。在这些计算中,第一个变量是病毒滴度,第二个变量是荧光强度。因此,我们使用指数分布生成曲线拟合以确定病毒滴度与荧光强度之间的多项式关系。总体而言,我们得出结论,基于红外染料的蛋白质检测系统有助于诊断感染的病毒株并精确测定感染病原体的滴度。