Suppr超能文献

上皮组织和囊腔扩张需要有效的 Sec13-Sec31 驱动分泌。

Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.

机构信息

Cell Biology Laboratories, School of Biochemistry, Medical Sciences Building, University of Bristol, University Walk, Bristol, BS8 1TD, UK.

出版信息

J Cell Sci. 2012 Feb 1;125(Pt 3):673-84. doi: 10.1242/jcs.091355. Epub 2012 Feb 13.

Abstract

Epithelial morphogenesis is directed by interactions with the underlying extracellular matrix. Secretion of collagen and other matrix components requires efficient coat complex II (COPII) vesicle formation at the endoplasmic reticulum. Here, we show that suppression of the outer layer COPII component, Sec13, in zebrafish embryos results in a disorganized gut epithelium. In human intestinal epithelial cells (Caco-2), Sec13 depletion causes defective epithelial polarity and organization on permeable supports. Defects are seen in the ability of cells to adhere to the substrate, form a monolayer and form intercellular junctions. When embedded in a three-dimensional matrix, Sec13-depleted Caco-2 cells form cysts but, unlike controls, are defective in lumen expansion. Incorporation of primary fibroblasts within the three-dimensional culture substantially restores normal morphogenesis. We conclude that efficient COPII-dependent secretion, notably assembly of Sec13-Sec31, is required to drive epithelial morphogenesis in both two- and three-dimensional cultures in vitro, as well as in vivo. Our results provide insight into the role of COPII in epithelial morphogenesis and have implications for the interpretation of epithelial polarity and organization assays in cell culture.

摘要

上皮形态发生是由与基底细胞外基质的相互作用所指导的。胶原蛋白和其他基质成分的分泌需要在内质网上有效形成 II 型胞被小泡(COPII)。在这里,我们发现斑马鱼胚胎中外层 COPII 成分 Sec13 的抑制导致肠道上皮组织紊乱。在人肠道上皮细胞(Caco-2)中,Sec13 缺失导致上皮极性和在渗透性支持物上的组织缺陷。可以观察到细胞粘附到基质、形成单层和形成细胞间连接的能力下降。当嵌入三维基质中时,Sec13 缺失的 Caco-2 细胞形成囊泡,但与对照相比,在管腔扩张方面存在缺陷。三维培养中包含原代成纤维细胞可大大恢复正常形态发生。我们得出结论,有效的 COPII 依赖性分泌,特别是 Sec13-Sec31 的组装,对于体外二维和三维培养以及体内的上皮形态发生是必需的。我们的结果提供了对 COPII 在上皮形态发生中的作用的深入了解,并对细胞培养中上皮极性和组织分析的解释具有影响。

相似文献

1
Epithelial organization and cyst lumen expansion require efficient Sec13-Sec31-driven secretion.
J Cell Sci. 2012 Feb 1;125(Pt 3):673-84. doi: 10.1242/jcs.091355. Epub 2012 Feb 13.
3
Sec13 safeguards the integrity of the endoplasmic reticulum and organogenesis of the digestive system in zebrafish.
Dev Biol. 2012 Jul 15;367(2):197-207. doi: 10.1016/j.ydbio.2012.05.004. Epub 2012 May 15.
4
The nuclear pore complex function of Sec13 protein is required for cell survival during retinal development.
J Biol Chem. 2014 Apr 25;289(17):11971-11985. doi: 10.1074/jbc.M114.547190. Epub 2014 Mar 13.
5
A pseudoatomic model of the COPII cage obtained from cryo-electron microscopy and mass spectrometry.
Nat Struct Mol Biol. 2013 Feb;20(2):167-73. doi: 10.1038/nsmb.2467. Epub 2012 Dec 23.
6
The genetic basis of a craniofacial disease provides insight into COPII coat assembly.
Dev Cell. 2007 Nov;13(5):623-634. doi: 10.1016/j.devcel.2007.10.005.
8
Structure of the Sec13/31 COPII coat cage.
Nature. 2006 Jan 12;439(7073):234-8. doi: 10.1038/nature04339.
9
Inhibition of PLD1 activity causes ER stress via regulation of COPII vesicle formation.
Biochem Biophys Res Commun. 2017 Aug 26;490(3):895-900. doi: 10.1016/j.bbrc.2017.06.137. Epub 2017 Jun 22.
10
Structure of the Sec13-Sec16 edge element, a template for assembly of the COPII vesicle coat.
J Cell Biol. 2010 Aug 9;190(3):347-61. doi: 10.1083/jcb.201003092.

引用本文的文献

2
Cargo selection in endoplasmic reticulum-to-Golgi transport and relevant diseases.
J Clin Invest. 2023 Jan 3;133(1):e163838. doi: 10.1172/JCI163838.
4
Visualization of Procollagen IV Reveals ER-to-Golgi Transport by ERGIC-independent Carriers.
Cell Struct Funct. 2020 Jul 23;45(2):107-119. doi: 10.1247/csf.20025. Epub 2020 Jun 18.
5
Biophysical Control of Bile Duct Epithelial Morphogenesis in Natural and Synthetic Scaffolds.
Front Bioeng Biotechnol. 2019 Dec 13;7:417. doi: 10.3389/fbioe.2019.00417. eCollection 2019.
6
Models of Intracellular Transport: Pros and Cons.
Front Cell Dev Biol. 2019 Aug 7;7:146. doi: 10.3389/fcell.2019.00146. eCollection 2019.
7
ER-to-Golgi trafficking of procollagen in the absence of large carriers.
J Cell Biol. 2019 Mar 4;218(3):929-948. doi: 10.1083/jcb.201806035. Epub 2018 Dec 26.
8
COPII-dependent ER export in animal cells: adaptation and control for diverse cargo.
Histochem Cell Biol. 2018 Aug;150(2):119-131. doi: 10.1007/s00418-018-1689-2. Epub 2018 Jun 18.
9
Cell Systems to Investigate the Impact of Polyphenols on Cardiovascular Health.
Nutrients. 2015 Nov 11;7(11):9229-55. doi: 10.3390/nu7115462.
10
Integrins and epithelial cell polarity.
J Cell Sci. 2014 Aug 1;127(Pt 15):3217-25. doi: 10.1242/jcs.146142. Epub 2014 Jul 2.

本文引用的文献

1
Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse.
J Cell Biol. 2011 May 30;193(5):935-51. doi: 10.1083/jcb.201007162. Epub 2011 May 23.
2
Cargo loading at the ER.
Mol Membr Biol. 2010 Nov;27(8):398-411. doi: 10.3109/09687688.2010.506203.
3
The structure of a COPII tubule.
J Struct Biol. 2011 Feb;173(2):358-64. doi: 10.1016/j.jsb.2010.09.002. Epub 2010 Sep 7.
4
Sar1 assembly regulates membrane constriction and ER export.
J Cell Biol. 2010 Jul 12;190(1):115-28. doi: 10.1083/jcb.201004132.
7
Sec24-dependent secretion drives cell-autonomous expansion of tracheal tubes in Drosophila.
Curr Biol. 2010 Jan 12;20(1):62-8. doi: 10.1016/j.cub.2009.11.062. Epub 2009 Dec 31.
8
TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites.
Cell. 2009 Mar 6;136(5):891-902. doi: 10.1016/j.cell.2008.12.025.
9
Cdc42 controls spindle orientation to position the apical surface during epithelial morphogenesis.
J Cell Biol. 2008 Nov 17;183(4):625-33. doi: 10.1083/jcb.200807121. Epub 2008 Nov 10.
10
From cells to organs: building polarized tissue.
Nat Rev Mol Cell Biol. 2008 Nov;9(11):887-901. doi: 10.1038/nrm2523.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验