Suppr超能文献

G 蛋白偶联受体(GPCR)同型二聚体及其变构的受体-受体相互作用。

GPCR heteromers and their allosteric receptor-receptor interactions.

机构信息

Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.

出版信息

Curr Med Chem. 2012;19(3):356-63. doi: 10.2174/092986712803414259.

Abstract

The concept of intramembrane receptor-receptor interactions and evidence for their existences were introduced in the beginning of the 1980's, suggesting the existence of receptor heterodimerization. The discovery of GPCR heteromers and the receptor mosaic (higher order oligomers, more than two) has been related to the parallel development and application of a variety of resonance energy transfer techniques such as bioluminescence (BRET), fluorescence (FRET) and sequential energy transfer (SRET). The assembly of interacting GPCRs, heterodimers and receptor mosaic leads to changes in the agonist recognition, signaling, and trafficking of participating receptors via allosteric mechanisms, sometimes involving the appearance of cooperativity. The receptor interface in the GPCR heteromers is beginning to be characterized and the key role of electrostatic epitope-epitope interactions for the formation of the receptor heteromers will be discussed. Furthermore, a "guide-and-clasp" manner of receptor-receptor interactions has been proposed where the "adhesive guides" may be the triplet homologies. These interactions probably represent a general molecular mechanism for receptor-receptor interactions. It is proposed that changes in GPCR function (moonlighting) may develop through the intracellular loops and C-terminii of the GPCR heteromers as a result of dynamic allosteric interactions between different types of G proteins and other receptor interacting proteins in these domains of the receptors. The evidence for the existence of receptor heteromers opens up a new field for a better understanding of neurophysiology and neuropathology. Furthermore, novel therapeutic approaches could be possible based on the use of heteromers as targets for drug development based on their unique pharmacology.

摘要

膜受体-受体相互作用的概念及其存在的证据于 20 世纪 80 年代初被引入,这表明受体异二聚体的存在。GPCR 异二聚体和受体马赛克(更高阶的寡聚体,超过两个)的发现与各种共振能量转移技术的平行发展和应用有关,如生物发光(BRET)、荧光(FRET)和顺序能量转移(SRET)。相互作用的 GPCR、异二聚体和受体马赛克的组装导致参与受体的激动剂识别、信号转导和运输通过变构机制发生变化,有时涉及协同作用的出现。GPCR 异二聚体中的受体界面开始被表征,静电表位-表位相互作用对于形成受体异二聚体的关键作用将被讨论。此外,提出了一种“引导和扣合”的受体-受体相互作用方式,其中“粘性引导物”可能是三联体同源性。这些相互作用可能代表了受体-受体相互作用的一般分子机制。有人提出,GPCR 功能(兼职)的变化可能是由于不同类型的 G 蛋白和这些受体域中的其他受体相互作用蛋白之间的动态变构相互作用,通过 GPCR 异二聚体的细胞内环和 C 末端发展。受体异二聚体存在的证据为更好地理解神经生理学和神经病理学开辟了一个新的领域。此外,基于异二聚体作为药物开发靶点的独特药理学,可能会有新的治疗方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验