Fuxe Kjell, Borroto-Escuela Dasiel, Fisone Gilberto, Agnati Luigi F, Tanganelli Sergio
Department of Neuroscience Karolinska Institutet Stockholm Sweden.
Curr Protein Pept Sci. 2014;15(7):647. doi: 10.2174/138920371507140916122738.
This special issue is based on a mini-symposium in the area of neurosciences with the title "Understanding the role of heteroreceptor complexes in the central nervous system" held at the Nobel Forum, Karolinska Institutet on December 17th, 2012, organized by Kjell Fuxe, Dasiel O. Borroto-Escuela and Luigi F. Agnati. It consists of seven mini-reviews in the field receptor heteromers. The early work on negative cooperativity and neuropeptide-monoamine receptor-receptor interactions in the central nervous system gave the first indications of the existence of homomers and heteromers of G-protein coupled receptors (GPCR), respectively, and the GPCR field began to expand from monomers into dimers and receptor mosaics (higher-order dimers). It was underlined that the existence of receptor heteromers with allosteric receptor-receptor interactions increases the diversity and bias of GPCR recognition and signalling. The molecular phenomenon of allosteric receptor-receptor interactions is proposed to give a better understanding of brain function through molecular integration of signals. An alteration in specific receptor-receptor interactions is in fact considered to play a role in pathogenic mechanisms leading to several diseases, inter alia Parkinson's disease, hypertension, schizophrenia, addiction and depression. It is a new principle in molecular medicine. Therefore, pharmacological targeting of receptor-receptor interactions in heteromers will become an important area for developing more selective drugs with reduced side-effects including heterobivalent compounds and optimal types of combined treatments. In other words , it will lead to novel strategies for treatment, and finally novel drugs for treatment of disease. The first mini-review by Dr. Tena-Campus and colleagues introduces the field of GPCR oligomerization as emerging signalling units with new opportunities for drug design and discusses the technologies involved for detection of receptor heteromers. Then the issue moves into examples of receptor-receptor interactions in the DA and neuropeptide field. Dr. Van Craenenbroeck and colleagues presents an article on the role of dimerization in the biogenesis of DA D4 receptors and thus in their maturation. Dr. Zaida Diaz-Cabiale and colleagues describe the existence of galanin receptor-neuropeptide Y receptor interactions in the brain including galanin receptor-neuropeptide Y Y1 interactions in the brain stem. Indications are obtained that the receptor target for galanin fragment 1-15 is instead a GalR1-GalR2 heteromer. Then the special issue enters into the role of receptor-receptor interactions in putative striatal GPCR heteromers in Parkinson's disease and schizophrenia. Dr. Beggiato and colleagues discuss the role of antagonistic adenosine A2A-D2 receptorreceptor interactions in the striato-pallidal GABA neurons and their relevance for treatment of Parkinson's disease. They give the rationale for the introduction of A2A receptor antagonists in clinical trials in this disease based on these antagonistic receptor- receptor interactions which become even more strongly developed in animal models of Parkinson's disease. Dr. Luca Ferraro and colleagues instead discuss in detail the antagonistic Neurotensin NTS1-dopamine D2 receptor-receptor interactions in putative receptor heteromers in the dorsal and ventral striatum. Their involvement in striato-pallidal GABA and mesocorticolimbic DA communication is discussed with focus on their relevance for Parkinson's disease, schizophrenia and their treatments. Dr. Di Liberto and colleagues deal with the role of receptor-receptor interactions in brain trophism and plasticity with focus on interactions between G protein-coupled receptor-Receptor Tyrosine Kinase, specially the cholinergic and fibroblast growth factor receptor 1 (FGFR1). mAChR-FGFR1 interactions are indicated leading to transactivation of FGFR1 with potential relevance for cognition. Luigi Agnati and colleagues in the last paper of this special issue suggest a unified perspective for integrative brain actions through " neurosemeiotics" and " free energy minimization". Especially the Bio-semeiotics concept of "adaptor" may involve the receptor-receptor interactions in heteroreceptor complexes. Through such "adaptors" a code may be produced that give meaning to the sensory stimuli reaching the cortical regions of the brain . We hope the readers will find the articles in this special issue of interest and may give some inspiration to enter this exciting field of receptor research in the CNS which opens up a novel understanding of the molecular events that may lead to neurological and mental diseases and offer novel strategies for their treatments. The editors are grateful to the authors for their fine contributions to this special issue.
本期特刊基于2012年12月17日在卡罗琳斯卡学院诺贝尔论坛举办的一场神经科学领域的小型研讨会,主题为“理解异源受体复合物在中枢神经系统中的作用”,由凯尔·富克斯、达西尔·O·博罗托 - 埃斯库埃拉和路易吉·F·阿尼亚蒂组织。它包含了该领域受体异聚体方面的七篇小型综述。中枢神经系统中关于负协同效应以及神经肽 - 单胺受体 - 受体相互作用的早期研究,分别首次表明了G蛋白偶联受体(GPCR)同聚体和异聚体的存在,并且GPCR领域开始从单体扩展到二聚体和受体镶嵌体(高阶二聚体)。强调了具有变构受体 - 受体相互作用的受体异聚体的存在增加了GPCR识别和信号传导的多样性与偏向性。变构受体 - 受体相互作用的分子现象被认为通过信号的分子整合能更好地理解脑功能。事实上,特定受体 - 受体相互作用的改变被认为在导致多种疾病(尤其是帕金森病、高血压、精神分裂症、成瘾和抑郁症)的致病机制中起作用。这是分子医学中的一个新原则。因此,针对异聚体中受体 - 受体相互作用的药理学靶向将成为开发具有更少副作用的更具选择性药物(包括异双价化合物和最佳联合治疗类型)的一个重要领域。换句话说,它将带来新的治疗策略,最终带来治疗疾病的新药。特娜 - 坎波斯博士及其同事的第一篇小型综述介绍了GPCR寡聚化领域,将其作为具有药物设计新机会的新兴信号单元,并讨论了用于检测受体异聚体的相关技术。然后该特刊进入多巴胺(DA)和神经肽领域受体 - 受体相互作用的实例。范·克拉嫩布罗克博士及其同事发表了一篇关于二聚化在DA D4受体生物合成及其成熟过程中的作用的文章。扎伊达·迪亚斯 - 卡比亚莱博士及其同事描述了大脑中甘丙肽受体 - 神经肽Y受体相互作用的存在,包括脑干中甘丙肽受体 - 神经肽Y Y1相互作用。有迹象表明,甘丙肽片段1 - 15的受体靶点实际上是GalR1 - GalR2异聚体。然后特刊进入受体 - 受体相互作用在帕金森病和精神分裂症中假定的纹状体GPCR异聚体中的作用。贝贾托博士及其同事讨论了拮抗腺苷A2A - D2受体 - 受体相互作用在纹状体 - 苍白球GABA能神经元中的作用及其与帕金森病治疗的相关性。基于这些拮抗受体 - 受体相互作用(在帕金森病动物模型中这种相互作用甚至更强烈地发展),他们给出了在该疾病临床试验中引入A2A受体拮抗剂的理论依据。卢卡·费拉罗博士及其同事则详细讨论了在背侧和腹侧纹状体假定的受体异聚体中拮抗神经降压素NTS1 - 多巴胺D2受体 - 受体相互作用。讨论了它们在纹状体 - 苍白球GABA和中脑皮质边缘DA通讯中的参与情况,重点关注它们与帕金森病、精神分裂症及其治疗的相关性。迪·利贝托博士及其同事探讨了受体 - 受体相互作用在脑营养和可塑性中的作用,重点关注G蛋白偶联受体 - 受体酪氨酸激酶之间的相互作用,特别是胆碱能和成纤维细胞生长因子受体1(FGFR1)。表明mAChR - FGFR1相互作用导致FGFR1的反式激活,这可能与认知相关。路易吉·阿尼亚蒂及其同事在本期特刊的最后一篇文章中通过“神经符号学”和“自由能最小化”提出了整合脑功能的统一观点。特别是“衔接子”的生物符号学概念可能涉及异源受体复合物中的受体 - 受体相互作用。通过这样的“衔接子”可能产生一种代码,赋予到达大脑皮质区域的感觉刺激以意义。我们希望读者会对本期特刊中的文章感兴趣,并可能从中获得一些灵感,从而进入中枢神经系统中这个令人兴奋的受体研究领域,该领域为可能导致神经和精神疾病的分子事件开启了新的理解,并为其治疗提供了新的策略。编辑们感谢作者为本特刊做出的出色贡献。