Suppr超能文献

比较密度泛函理论研究以确定α-氧代醛是否为戊糖素形成的前体。

Comparative DFT study to determine if α-oxoaldehydes are precursors for pentosidine formation.

机构信息

Department of Chemistry, Faculty of Sciences, Shahid Beheshti University, Evin, 19839-63113, Tehran, Iran.

出版信息

J Phys Chem A. 2012 Mar 22;116(11):2986-96. doi: 10.1021/jp2104165. Epub 2012 Mar 7.

Abstract

We report a comprehensive density functional theory (DFT) study of the mechanism of pentosidine formation. This work is a continuation of our earlier studies in which we proposed pathways for formation of glucosepane (J. Mol. Model. 2011, pp 1-15, DOI 10.1007/s00894-011-1161-x), GODIC (glyoxal-derived imidazolium cross-link), and MODIC (methyl glyoxal-derived imidazolium cross-link; J. Phys. Chem. 2011, 115, pp 13542-13555). Here we show that formation of pentosidine via reaction of α-oxoaldehydes with lysine and arginine in aqueous solution is possible thermodynamically and kinetically, in good agreement with the available experimental evidence. Five pathways, A-E, were characterized, as in our previous GODIC and MODIC work. In pathways A and B, a Schiff base is first formed from lysine and methyl glyoxal (MGO), and this is followed by addition of arginine and glyoxal (GO). By contrast, in pathways C, D, and E, addition of arginine to MGO occurs first, resulting in the formation of imidazolone, which then reacts with lysine and GO to give pentosidine. Our calculations show that the reaction process is highly exergonic and that the three pathways A, C, and E are competitive. These results serve to underline the potentially important role that α-oxoaldehydes play as precursors in pentosidine formation in the complex field of glycation.

摘要

我们报告了戊糖素形成机制的全面密度泛函理论(DFT)研究。这项工作是我们早期研究的延续,在早期研究中,我们提出了葡萄糖醛(J. Mol. Model. 2011,第 1-15 页,DOI 10.1007/s00894-011-1161-x)、GODIC(糖醛衍生的咪唑鎓交联)和 MODIC(甲基糖醛衍生的咪唑鎓交联;J. Phys. Chem. 2011,第 115 卷,第 13542-13555 页)形成的途径。在这里,我们表明α-氧代醛与赖氨酸和精氨酸在水溶液中反应形成戊糖素在热力学和动力学上都是可行的,这与现有实验证据非常吻合。与我们之前的 GODIC 和 MODIC 工作一样,我们对五条途径 A-E 进行了特征描述。在途径 A 和 B 中,赖氨酸和甲基乙二醛(MGO)首先形成希夫碱,然后加入精氨酸和乙二醛(GO)。相比之下,在途径 C、D 和 E 中,首先是精氨酸与 MGO 加成,形成咪唑酮,然后与赖氨酸和 GO 反应生成戊糖素。我们的计算表明,反应过程是高度放能的,途径 A、C 和 E 是竞争性的。这些结果突出了α-氧代醛作为戊糖素在糖化复杂领域形成的前体的潜在重要作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验