Applied Physics, California Institute of Technology, Pasadena, California 91125, USA.
Nature. 2012 Feb 15;482(7385):379-81. doi: 10.1038/nature10827.
Magnetic reconnection, the process whereby magnetic field lines break and then reconnect to form a different topology, underlies critical dynamics of magnetically confined plasmas in both nature and the laboratory. Magnetic reconnection involves localized diffusion of the magnetic field across plasma, yet observed reconnection rates are typically much higher than can be accounted for using classical electrical resistivity. It is generally proposed that the field diffusion underlying fast reconnection results instead from some combination of non-magnetohydrodynamic processes that become important on the 'microscopic' scale of the ion Larmor radius or the ion skin depth. A recent laboratory experiment demonstrated a transition from slow to fast magnetic reconnection when a current channel narrowed to a microscopic scale, but did not address how a macroscopic magnetohydrodynamic system accesses the microscale. Recent theoretical models and numerical simulations suggest that a macroscopic, two-dimensional magnetohydrodynamic current sheet might do this through a sequence of repetitive tearing and thinning into two-dimensional magnetized plasma structures having successively finer scales. Here we report observations demonstrating a cascade of instabilities from a distinct, macroscopic-scale magnetohydrodynamic instability to a distinct, microscopic-scale (ion skin depth) instability associated with fast magnetic reconnection. These observations resolve the full three-dimensional dynamics and give insight into the frequently impulsive nature of reconnection in space and laboratory plasmas.
磁重联,即磁场线断裂然后重新连接形成不同拓扑结构的过程,是自然界和实验室中磁约束等离子体关键动力学的基础。磁重联涉及磁场在等离子体中的局部扩散,但观察到的重联速率通常远高于经典电导率所能解释的速率。一般认为,快速重联所涉及的场扩散是由于一些非磁流体力学过程的组合,这些过程在离子拉莫半径或离子趋肤深度的“微观”尺度上变得重要。最近的一项实验室实验表明,当电流通道缩小到微观尺度时,从慢磁重联转变为快磁重联,但没有解决宏观磁流体动力学系统如何进入微观尺度的问题。最近的理论模型和数值模拟表明,宏观二维磁流体动力电流片可能通过一系列重复的撕裂和变薄,进入具有相继更细尺度的二维磁化等离子体结构来实现这一点。在这里,我们报告了观测结果,这些结果表明,从一个明显的宏观磁流体力学不稳定性到与快速磁重联相关的一个明显的微观尺度(离子趋肤深度)不稳定性的级联不稳定。这些观测结果解决了全三维动力学问题,并深入了解了空间和实验室等离子体中重联的频繁脉冲性质。