ARC Centre of Excellence for Electromaterials Science and School of Chemistry, Monash University, Clayton, Victoria 3800, Australia.
Inorg Chem. 2012 Mar 5;51(5):3302-15. doi: 10.1021/ic202761w. Epub 2012 Feb 16.
The feasibility of devising a solid support mediated approach to multimodal Ru(II)-peptide nucleic acid (PNA) oligomers is explored. Three Ru(II)-PNA-like monomers, Ru(bpy)(2)(Cpp-L-PNA-OH) (M1), Ru(phen)(2)(Cpp-L-PNA-OH) (M2), and Ru(dppz)(2)(Cpp-L-PNA-OH) (M3) (bpy = 2,2'-bipyridine, phen = 1,10-phenanthroline, dppz = dipyrido[3,2-a:2',3'-c]phenazine, Cpp-L-PNA-OH = [2-(N-9-fluorenylmethoxycarbonyl)aminoethyl]-N-[6-(2-(pyridin-2yl)pyrimidine-4-carboxamido)hexanoyl]-glycine), have been synthesized as building blocks for Ru(II)-PNA oligomers and characterized by IR and (1)H NMR spectroscopy, mass spectrometry, electrochemistry and elemental analysis. As a proof of principle, M1 was incorporated on the solid phase within the PNA sequences H-g-c-a-a-t-a-a-a-a-Lys-NH(2) (PNA1) and H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH(2) (PNA4) to give PNA2 (H-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)) and PNA3 (H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH(2)), respectively. The two Ru(II)-PNA oligomers, PNA2 and PNA3, displayed a metal to ligand charge transfer (MLCT) transition band centered around 445 nm and an emission maximum at about 680 nm following 450 nm excitation in aqueous solutions (10 mM PBS, pH 7.4). The absorption and emission response of the duplexes formed with the cDNA strand (DNA: 5'-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3') showed no major variations, suggesting that the electronic properties of the Ru(II) complexes are largely unaffected by hybridization. The thermal stability of the PNA·DNA duplexes, as evaluated from UV melting experiments, is enhanced compared to the corresponding nonmetalated duplexes. The melting temperature (T(m)) was almost 8 °C higher for PNA2·DNA duplex, and 4 °C for PNA3·DNA duplex, with the stabilization attributed to the electrostatic interaction between the cationic residues (Ru(II) unit and positively charged lysine/arginine) and the polyanionic DNA backbone. In presence of tripropylamine (TPA) as co-reactant, PNA2, PNA3, PNA2·DNA and PNA3·DNA displayed strong electrochemiluminescence (ECL) signals even at submicromolar concentrations. Importantly, the combination of spectrochemical, thermal and ECL properties possessed by the Ru(II)-PNA sequences offer an elegant approach for the design of highly sensitive multimodal biosensing tools.
探索设计一种固态支持介导的多模式 Ru(II)-肽核酸(PNA)寡聚物的可行性。合成了三种 Ru(II)-PNA 类似物单体 Ru(bpy)(2)(Cpp-L-PNA-OH)(M1)、Ru(phen)(2)(Cpp-L-PNA-OH)(M2)和 Ru(dppz)(2)(Cpp-L-PNA-OH)(M3)(bpy = 2,2'-联吡啶,phen = 1,10-菲咯啉,dppz = 二吡啶并[3,2-a:2',3'-c]吩嗪,Cpp-L-PNA-OH = [2-(N-9-芴甲氧羰基)氨基乙基]-N-[6-(2-(吡啶-2 基)嘧啶-4-羧酰胺基)己酰基]-甘氨酸),用作 Ru(II)-PNA 寡聚物的构建块,并通过红外和(1)H NMR 光谱、质谱、电化学和元素分析进行了表征。作为原理的证明,M1 被掺入 PNA 序列 H-g-c-a-a-t-a-a-a-a-Lys-NH(2)(PNA1)和 H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-lys-NH(2)(PNA4)中的固相内,分别得到 PNA2(H-g-c-a-a-t-a-a-a-a-M1-lys-NH(2))和 PNA3(H-P-K-K-K-R-K-V-g-c-a-a-t-a-a-a-a-M1-lys-NH(2))。两种 Ru(II)-PNA 寡聚物 PNA2 和 PNA3 在水溶液中(10 mM PBS,pH 7.4)在 450 nm 激发下显示出中心在 445 nm 左右的金属到配体电荷转移(MLCT)跃迁带和约 680 nm 的发射最大值。与 cDNA 链(DNA:5'-T-T-T-T-T-T-T-A-T-T-G-C-T-T-T-3')形成的双链的吸收和发射响应没有发生重大变化,表明 Ru(II)配合物的电子性质在很大程度上不受杂交的影响。从 UV 熔融实验评估的 PNA·DNA 双链体的热稳定性得到增强,与相应的非金属化双链体相比。PNA2·DNA 双链体的熔点(T(m))升高了近 8°C,而 PNA3·DNA 双链体升高了 4°C,这归因于阳离子残基(Ru(II)单元和带正电荷的赖氨酸/精氨酸)与多阴离子 DNA 主链之间的静电相互作用。在三丙胺(TPA)作为共反应物的存在下,PNA2、PNA3、PNA2·DNA 和 PNA3·DNA 即使在亚微摩尔浓度下也显示出强电化学发光(ECL)信号。重要的是,Ru(II)-PNA 序列的光谱化学、热和 ECL 特性的组合为设计高灵敏度多模式生物传感工具提供了一种优雅的方法。