文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用琥珀酸酐对基体进行酯化来增强油棕果串纤维的聚(己二酸丁二醇酯-对苯二甲酸酯)生物复合材料的机械和热性能。

Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride.

机构信息

Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

出版信息

Molecules. 2012 Feb 16;17(2):1969-91. doi: 10.3390/molecules17021969.


DOI:10.3390/molecules17021969
PMID:22343368
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6268389/
Abstract

In this work, the oil palm empty fruit bunch (EFB) fiber was used as a source of lignocellulosic filler to fabricate a novel type of cost effective biodegradable composite, based on the aliphatic aromatic co-polyester poly(butylene adipate-co-terephtalate) PBAT (Ecoflex™), as a fully biodegradable thermoplastic polymer matrix. The aim of this research was to improve the new biocomposites' performance by chemical modification using succinic anhydride (SAH) as a coupling agent in the presence and absence of dicumyl peroxide (DCP) and benzoyl peroxide (BPO) as initiators. For the composite preparation, several blends were prepared with varying ratios of filler and matrix using the melt blending technique. The composites were prepared at various fiber contents of 10, 20, 30, 40 and 50 (wt %) and characterized. The effects of fiber loading and coupling agent loading on the thermal properties of biodegradable polymer composites were evaluated using thermal gravimetric analysis (TGA). Scanning Electron Microscopy (SEM) was used for morphological studies. The chemical structure of the new biocomposites was also analyzed using the Fourier Transform Infrared (FTIR) spectroscopy technique. The PBAT biocomposite reinforced with 40 (wt %) of EFB fiber showed the best mechanical properties compared to the other PBAT/EFB fiber biocomposites. Biocomposite treatment with 4 (wt %) succinic anhydride (SAH) and 1 (wt %) dicumyl peroxide (DCP) improved both tensile and flexural strength as well as tensile and flexural modulus. The FTIR analyses proved the mechanical test results by presenting the evidence of successful esterification using SAH/DCP in the biocomposites' spectra. The SEM micrograph of the tensile fractured surfaces showed the improvement of fiber-matrix adhesion after using SAH. The TGA results showed that chemical modification using SAH/DCP improved the thermal stability of the PBAT/EFB biocomposite.

摘要

在这项工作中,油棕空果串(EFB)纤维被用作木质纤维素填料的来源,基于脂肪族芳香共聚酯聚丁二酸丁二醇酯-对苯二甲酸酯(PBAT)(Ecoflex™),作为一种完全可生物降解的热塑性聚合物基体,制备了一种新型的具有成本效益的可生物降解复合材料。本研究的目的是通过使用琥珀酸酐(SAH)作为偶联剂,在存在和不存在过氧化二异丙苯(DCP)和过氧化苯甲酰(BPO)作为引发剂的情况下,对新型生物复合材料进行化学改性,从而提高其性能。为了制备复合材料,使用熔融共混技术,用不同比例的填充剂和基体制备了几种混合物。将复合材料的纤维含量分别制备为 10、20、30、40 和 50(wt%),并对其进行了表征。使用热重分析(TGA)评估纤维负载和偶联剂负载对可生物降解聚合物复合材料热性能的影响。使用扫描电子显微镜(SEM)进行形态学研究。还使用傅里叶变换红外(FTIR)光谱技术分析了新生物复合材料的化学结构。与其他 PBAT/EFB 纤维生物复合材料相比,添加 40(wt%)EFB 纤维的 PBAT 生物复合材料表现出最佳的力学性能。用 4(wt%)琥珀酸酐(SAH)和 1(wt%)过氧化二异丙苯(DCP)处理生物复合材料,提高了拉伸和弯曲强度以及拉伸和弯曲模量。FTIR 分析通过在生物复合材料的光谱中呈现使用 SAH/DCP 成功酯化的证据,证明了力学测试结果。拉伸断裂表面的 SEM 显微照片显示,在使用 SAH 后,纤维-基体的附着力得到了提高。TGA 结果表明,使用 SAH/DCP 进行化学改性提高了 PBAT/EFB 生物复合材料的热稳定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/9c643a97a7cb/molecules-17-01969-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/1b469788f064/molecules-17-01969-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/c5ce6f3552c2/molecules-17-01969-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/50aa17b27e20/molecules-17-01969-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/68009cb7e7de/molecules-17-01969-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/8e50b87d6c92/molecules-17-01969-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/82db7c8e6301/molecules-17-01969-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/1a3fcb42d60f/molecules-17-01969-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/d08df3ff76a5/molecules-17-01969-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/a3495783b25d/molecules-17-01969-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/677fd6816db5/molecules-17-01969-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/887db5660085/molecules-17-01969-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/a5c3be5edf6a/molecules-17-01969-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/a5a28ba654b7/molecules-17-01969-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/9c643a97a7cb/molecules-17-01969-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/1b469788f064/molecules-17-01969-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/c5ce6f3552c2/molecules-17-01969-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/50aa17b27e20/molecules-17-01969-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/68009cb7e7de/molecules-17-01969-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/8e50b87d6c92/molecules-17-01969-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/82db7c8e6301/molecules-17-01969-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/1a3fcb42d60f/molecules-17-01969-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/d08df3ff76a5/molecules-17-01969-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/a3495783b25d/molecules-17-01969-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/677fd6816db5/molecules-17-01969-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/887db5660085/molecules-17-01969-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/a5c3be5edf6a/molecules-17-01969-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/a5a28ba654b7/molecules-17-01969-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6a7e/6268389/9c643a97a7cb/molecules-17-01969-g013.jpg

相似文献

[1]
Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride.

Molecules. 2012-2-16

[2]
Effect of fiber esterification on fundamental properties of oil palm empty fruit bunch fiber/poly(butylene adipate-co-terephthalate) biocomposites.

Int J Mol Sci. 2012

[3]
The effect of fiber bleaching treatment on the properties of poly(lactic acid)/oil palm empty fruit bunch fiber composites.

Int J Mol Sci. 2014-8-22

[4]
Impact strength and flexural properties enhancement of methacrylate silane treated oil palm mesocarp fiber reinforced biodegradable hybrid composites.

ScientificWorldJournal. 2014

[5]
A comparative study on the mechanical, thermal and morphological characterization of poly(lactic acid)/epoxidized Palm Oil blend.

Int J Mol Sci. 2012

[6]
Morphology and mechanical properties of poly(butylene adipate-co-terephthalate)/potato starch blends in the presence of synthesized reactive compatibilizer or modified poly(butylene adipate-co-terephthalate).

Carbohydr Polym. 2015-2-4

[7]
Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet.

Polymers (Basel). 2020-7-15

[8]
The influence of green surface modification of oil palm mesocarp fiber by superheated steam on the mechanical properties and dimensional stability of oil palm mesocarp fiber/poly(butylene succinate) biocomposite.

Int J Mol Sci. 2014-8-29

[9]
Effects of Rice Straw Powder (RSP) Size and Pretreatment on Properties of FDM 3D-Printed RSP/Poly(Lactic Acid) Biocomposites.

Molecules. 2021-5-27

[10]
Effect of glycidyl methacrylate (GMA) on the thermal, mechanical and morphological property of biodegradable PLA/PBAT blend and its nanocomposites.

Bioresour Technol. 2010-6-22

引用本文的文献

[1]
Characterization Study of Empty Fruit Bunch (EFB) Fibers Reinforcement in Poly(Butylene) Succinate (PBS)/Starch/Glycerol Composite Sheet.

Polymers (Basel). 2020-7-15

[2]
Effect of Maleic Anhydride-Modified Poly(lactic acid) on the Properties of Its Hybrid Fiber Biocomposites.

Polymers (Basel). 2017-5-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索