Centre for Research in Electroanalytical Technologies, Institute of Technology Tallaght, Tallaght, Dublin 24, Ireland.
Analyst. 2012 Apr 7;137(7):1639-48. doi: 10.1039/c2an16146j. Epub 2012 Feb 20.
A highly efficient and reproducible approach for effective Pt nanoparticles dispersion and excellent decoration (inside/outside) of functionalised carbon nanofibers (f-CNF) is presented. The surface morphological, compositional and structural characterisations of the synthesised Pt(19.2)/f-CNF(80.8) material were examined using transmission electron microscopy (TEM/STEM/DF-STEM), energy-dispersive X-ray spectrometry (EDS), thermogravimetric analysis (TGA/DTG), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Cyclic voltammetry (CV) was employed in order to confirm the typical electrochemical response for Pt. The aim of the work was to improve the utility of both the supporting matrix (via the use of both inner/outer surfaces of nanofibers) and precious Pt, together with the sensitive glucose determination. TEM data indicated successful nanoparticle decoration with average Pt particle size 2.4 nm. The studies demonstrated that utilisation of the inner surface of the nanofibers, together with the modified outer surface characteristics using chemical treatment, enables excellent decoration, effective dispersion and efficient impregnation of Pt nanoparticles on carbon nanofibers. Pt(19.2)/f-CNF(80.8) exhibited excellent amperometric response (sensitivity = 22.7 μAmM(-1)cm(-2) and LoD = 0.42 μM) towards direct glucose sensing, over the range 0-10 mM glucose, in neutral conditions (pH 7.4). The improved carbon surface area for nanoparticle decoration, inner surface structure and morphology of nanofibers together with the presence of functional groups provided strong interactions and stability. These features together with the effective nanoparticle dispersion and decoration resulted in excellent catalytic response. The decorated nanoscaled material (Pt(19.2)/f-CNF(80.8)) is capable of large scale production, providing sensing capability in neutral conditions, while eliminating the temperature sensitivity, pH and lifetime issues associated with glucose enzymatic sensors and holds great promise in the quantification of glucose in real clinical samples.
提出了一种高效、重现性好的方法,用于有效分散 Pt 纳米粒子,并在功能化碳纳米纤维(f-CNF)内外表面进行优异的修饰。通过透射电子显微镜(TEM/STEM/DF-STEM)、能谱(EDS)、热重分析(TGA/DTG)、X 射线衍射(XRD)和 X 射线光电子能谱(XPS)对合成的 Pt(19.2)/f-CNF(80.8)材料的表面形貌、组成和结构特征进行了研究。循环伏安法(CV)用于证实 Pt 的典型电化学响应。这项工作的目的是提高支撑基质(通过使用纳米纤维的内外表面)和贵金属 Pt 的实用性,同时提高葡萄糖的敏感检测。TEM 数据表明纳米颗粒成功修饰,平均 Pt 颗粒尺寸为 2.4nm。研究表明,利用纳米纤维的内表面,结合化学处理对改性外表面特性的利用,能够实现 Pt 纳米粒子在碳纳米纤维上的优异修饰、有效分散和高效浸渍。Pt(19.2)/f-CNF(80.8)在中性条件(pH7.4)下,对 0-10mM 葡萄糖的直接葡萄糖传感表现出优异的安培响应(灵敏度=22.7μAmM(-1)cm(-2)和 LoD=0.42μM)。纳米粒子修饰的碳表面面积增加、纳米纤维的内表面结构和形态以及官能团的存在提供了强相互作用和稳定性。这些特性加上有效的纳米粒子分散和修饰,导致了优异的催化响应。修饰的纳米级材料(Pt(19.2)/f-CNF(80.8))能够进行大规模生产,在中性条件下提供传感能力,同时消除了与葡萄糖酶传感器相关的温度敏感性、pH 值和寿命问题,在实际临床样本中葡萄糖的定量检测方面具有很大的应用前景。