Suppr超能文献

k-ZIG:零膨胀计数的灵活建模

The k-ZIG: flexible modeling for zero-inflated counts.

作者信息

Ghosh Souparno, Gelfand Alan E, Zhu Kai, Clark James S

机构信息

Department of Statistical Science, Duke University, Durham, North Carolina 27708-0251, USA.

出版信息

Biometrics. 2012 Sep;68(3):878-85. doi: 10.1111/j.1541-0420.2011.01729.x. Epub 2012 Feb 20.

Abstract

Many applications involve count data from a process that yields an excess number of zeros. Zero-inflated count models, in particular, zero-inflated Poisson (ZIP) and zero-inflated negative binomial (ZINB) models, along with Poisson hurdle models, are commonly used to address this problem. However, these models struggle to explain extreme incidence of zeros (say more than 80%), especially to find important covariates. In fact, the ZIP may struggle even when the proportion is not extreme. To redress this problem we propose the class of k-ZIG models. These models allow more flexible modeling of both the zero-inflation and the nonzero counts, allowing interplay between these two components. We develop the properties of this new class of models, including reparameterization to a natural link function. The models are straightforwardly fitted within a Bayesian framework. The methodology is illustrated with simulated data examples as well as a forest seedling dataset obtained from the USDA Forest Service's Forest Inventory and Analysis program.

摘要

许多应用涉及来自某个过程的计数数据,该过程会产生过多的零值。特别是零膨胀计数模型,即零膨胀泊松(ZIP)模型和零膨胀负二项式(ZINB)模型,以及泊松障碍模型,通常用于解决此问题。然而,这些模型难以解释零值的极端发生率(例如超过80%),尤其是难以找到重要的协变量。实际上,即使比例并非极端,ZIP模型也可能面临困难。为了解决这个问题,我们提出了k-ZIG模型类别。这些模型允许对零膨胀和非零计数进行更灵活的建模,允许这两个组件之间相互作用。我们开发了这类新模型的性质,包括重新参数化为自然链接函数。这些模型可以在贝叶斯框架内直接进行拟合。通过模拟数据示例以及从美国农业部森林服务局的森林清查与分析计划获得的森林幼苗数据集来说明该方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验