Suppr超能文献

具有随机效应的零膨胀泊松和二项式回归:一个案例研究。

Zero-inflated Poisson and binomial regression with random effects: a case study.

作者信息

Hall D B

机构信息

Department of Statistics, University of Georgia, Athens, Georgia 30602-1952, USA.

出版信息

Biometrics. 2000 Dec;56(4):1030-9. doi: 10.1111/j.0006-341x.2000.01030.x.

Abstract

In a 1992 Technometrics paper, Lambert (1992, 34, 1-14) described zero-inflated Poisson (ZIP) regression, a class of models for count data with excess zeros. In a ZIP model, a count response variable is assumed to be distributed as a mixture of a Poisson(lambda) distribution and a distribution with point mass of one at zero, with mixing probability p. Both p and lambda are allowed to depend on covariates through canonical link generalized linear models. In this paper, we adapt Lambert's methodology to an upper bounded count situation, thereby obtaining a zero-inflated binomial (ZIB) model. In addition, we add to the flexibility of these fixed effects models by incorporating random effects so that, e.g., the within-subject correlation and between-subject heterogeneity typical of repeated measures data can be accommodated. We motivate, develop, and illustrate the methods described here with an example from horticulture, where both upper bounded count (binomial-type) and unbounded count (Poisson-type) data with excess zeros were collected in a repeated measures designed experiment.

摘要

在1992年发表于《技术计量学》的一篇论文中,兰伯特(1992年,第34卷,第1 - 14页)描述了零膨胀泊松(ZIP)回归,这是一类用于处理存在过多零值的计数数据的模型。在一个ZIP模型中,计数响应变量被假定为泊松(λ)分布与在零处有一个单位点质量的分布的混合,混合概率为p。p和λ都可以通过典范链接广义线性模型依赖于协变量。在本文中,我们将兰伯特的方法应用于计数有上限的情况,从而得到一个零膨胀二项式(ZIB)模型。此外,我们通过纳入随机效应增加了这些固定效应模型的灵活性,这样就可以处理例如重复测量数据中典型的受试者内相关性和受试者间异质性。我们通过一个园艺学的例子来推动、发展并阐释这里所描述的方法,在这个例子中,在一个重复测量设计实验中收集了计数有上限(二项式类型)和无上限(泊松类型)且存在过多零值的数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验