Departamento de Fisiopatología, Facultad de Ciencias Biológicas, Universidad de Concepción, Casilla 160C, Concepción, Chile.
Free Radic Biol Med. 2012 May 1;52(9):1874-87. doi: 10.1016/j.freeradbiomed.2012.02.017. Epub 2012 Feb 18.
Although there is in vivo evidence suggesting a role for glutathione in the metabolism and tissue distribution of vitamin C, no connection with the vitamin C transport systems has been reported. We show here that disruption of glutathione metabolism with buthionine-(S,R)-sulfoximine (BSO) produced a sustained blockade of ascorbic acid transport in rat hepatocytes and rat hepatoma cells. Rat hepatocytes expressed the Na(+)-coupled ascorbic acid transporter-1 (SVCT1), while hepatoma cells expressed the transporters SVCT1 and SVCT2. BSO-treated rat hepatoma cells showed a two order of magnitude decrease in SVCT1 and SVCT2 mRNA levels, undetectable SVCT1 and SVCT2 protein expression, and lacked the capacity to transport ascorbic acid, effects that were fully reversible on glutathione repletion. Interestingly, although SVCT1 mRNA levels remained unchanged in rat hepatocytes made glutathione deficient by in vivo BSO treatment, SVCT1 protein was absent from the plasma membrane and the cells lacked the capacity to transport ascorbic acid. The specificity of the BSO treatment was indicated by the finding that transport of oxidized vitamin C (dehydroascorbic acid) and glucose transporter expression were unaffected by BSO treatment. Moreover, glutathione depletion failed to affect ascorbic acid transport, and SVCT1 and SVCT2 expression in human hepatoma cells. Therefore, our data indicate an essential role for glutathione in controlling vitamin C metabolism in rat hepatocytes and rat hepatoma cells, two cell types capable of synthesizing ascorbic acid, by regulating the expression and subcellular localization of the transporters involved in the acquisition of ascorbic acid from extracellular sources, an effect not observed in human cells incapable of synthesizing ascorbic acid.
虽然有体内证据表明谷胱甘肽在维生素 C 的代谢和组织分布中起作用,但尚未报道其与维生素 C 转运系统有关。我们在这里表明,用丁硫氨酸-(S,R)-亚砜(BSO)破坏谷胱甘肽代谢会在大鼠肝细胞和大鼠肝癌细胞中持续阻断抗坏血酸转运。大鼠肝细胞表达 Na(+)-偶联抗坏血酸转运蛋白-1(SVCT1),而肝癌细胞表达转运蛋白 SVCT1 和 SVCT2。BSO 处理的肝癌细胞 SVCT1 和 SVCT2 mRNA 水平下降两个数量级,SVCT1 和 SVCT2 蛋白表达无法检测,并且缺乏转运抗坏血酸的能力,这些效应在谷胱甘肽补充后完全逆转。有趣的是,尽管体内 BSO 处理使大鼠肝细胞中的谷胱甘肽缺乏,但 SVCT1 mRNA 水平保持不变,但 SVCT1 蛋白不存在于质膜中,细胞也缺乏转运抗坏血酸的能力。BSO 处理的特异性表明,氧化维生素 C(脱氢抗坏血酸)和葡萄糖转运蛋白表达的转运不受 BSO 处理的影响。此外,谷胱甘肽耗竭不会影响人肝癌细胞中的抗坏血酸转运和 SVCT1 和 SVCT2 的表达。因此,我们的数据表明,谷胱甘肽在控制大鼠肝细胞和大鼠肝癌细胞的维生素 C 代谢中起重要作用,这两种细胞类型能够合成抗坏血酸,通过调节涉及从细胞外来源摄取抗坏血酸的转运蛋白的表达和亚细胞定位来实现,这种效应在不能合成抗坏血酸的人细胞中观察不到。