Suppr超能文献

大脑皮层神经原纤维层在人类和黑猩猩中的分布存在差异。

Neuropil distribution in the cerebral cortex differs between humans and chimpanzees.

机构信息

Department of Anthropology, The George Washington University, Washington, DC 20052, USA.

出版信息

J Comp Neurol. 2012 Sep 1;520(13):2917-29. doi: 10.1002/cne.23074.

Abstract

Increased connectivity of high-order association regions in the neocortex has been proposed as a defining feature of human brain evolution. At present, however, there are limited comparative data to examine this claim fully. We tested the hypothesis that the distribution of neuropil across areas of the neocortex of humans differs from that of one of our closest living relatives, the common chimpanzee. The neuropil provides a proxy measure of total connectivity within a local region because it is composed mostly of dendrites, axons, and synapses. Using image analysis techniques, we quantified the neuropil fraction from both hemispheres in six cytoarchitectonically defined regions including frontopolar cortex (area 10), Broca's area (area 45), frontoinsular cortex (area FI), primary motor cortex (area 4), primary auditory cortex (area 41/42), and the planum temporale (area 22). Our results demonstrate that humans exhibit a unique distribution of neuropil in the neocortex compared to chimpanzees. In particular, the human frontopolar cortex and the frontoinsular cortex had a significantly higher neuropil fraction than the other areas. In chimpanzees these prefrontal regions did not display significantly more neuropil, but the primary auditory cortex had a lower neuropil fraction than other areas. Our results support the conclusion that enhanced connectivity in the prefrontal cortex accompanied the evolution of the human brain. These species differences in neuropil distribution may offer insight into the neural basis of human cognition, reflecting enhancement of the integrative capacity of the prefrontal cortex.

摘要

大脑新皮层中高级联合区域的连接性增加被认为是人类大脑进化的一个特征。然而,目前对于这一观点的验证还存在有限的比较数据。我们检验了这样一个假设,即人类新皮层区域的神经胶质组织(neuropil)分布与我们最近的亲缘物种之一,黑猩猩,存在差异。神经胶质组织(neuropil)主要由树突、轴突和突触组成,因此它是局部区域内总连接性的一个替代测量指标。我们使用图像分析技术,从六个细胞构筑定义的区域(包括额极皮质(area 10)、布罗卡区(area 45)、额岛皮质(area FI)、初级运动皮质(area 4)、初级听觉皮质(area 41/42)和颞平面(area 22))的两个半球中量化了神经胶质组织(neuropil)的分数。我们的结果表明,与黑猩猩相比,人类新皮层中的神经胶质组织(neuropil)分布具有独特性。特别是,人类的额极皮质(area 10)和额岛皮质(area FI)的神经胶质组织(neuropil)分数明显高于其他区域。在黑猩猩中,这些前额区域并没有表现出明显更多的神经胶质组织(neuropil),但初级听觉皮质(area 41/42)的神经胶质组织(neuropil)分数低于其他区域。我们的结果支持了这样的结论,即前额皮质连接性的增强伴随着人类大脑的进化。这种神经胶质组织(neuropil)分布的物种差异可能为人类认知的神经基础提供了一些见解,反映了前额皮质整合能力的增强。

相似文献

1
Neuropil distribution in the cerebral cortex differs between humans and chimpanzees.
J Comp Neurol. 2012 Sep 1;520(13):2917-29. doi: 10.1002/cne.23074.
2
Comparison of bonobo and chimpanzee brain microstructure reveals differences in socio-emotional circuits.
Brain Struct Funct. 2019 Jan;224(1):239-251. doi: 10.1007/s00429-018-1751-9. Epub 2018 Oct 10.
4
Dendritic morphology of pyramidal neurons in the chimpanzee neocortex: regional specializations and comparison to humans.
Cereb Cortex. 2013 Oct;23(10):2429-36. doi: 10.1093/cercor/bhs239. Epub 2012 Aug 8.
5
Differences in cytoarchitecture of Broca's region between human, ape and macaque brains.
Cortex. 2019 Sep;118:132-153. doi: 10.1016/j.cortex.2018.09.008. Epub 2018 Sep 24.
6
Lateralization of minicolumns in human planum temporale is absent in nonhuman primate cortex.
Brain Behav Evol. 2001 Jun;57(6):349-58. doi: 10.1159/000047253.
7
Evolution of the cerebellar cortex: the selective expansion of prefrontal-projecting cerebellar lobules.
Neuroimage. 2010 Feb 1;49(3):2045-52. doi: 10.1016/j.neuroimage.2009.10.045. Epub 2009 Oct 24.
8
Morphological differences between minicolumns in human and nonhuman primate cortex.
Am J Phys Anthropol. 2001 Aug;115(4):361-71. doi: 10.1002/ajpa.1092.
9
The Association between handedness, brain asymmetries, and corpus callosum size in chimpanzees (Pan troglodytes).
Cereb Cortex. 2007 Aug;17(8):1757-65. doi: 10.1093/cercor/bhl086. Epub 2006 Sep 29.

引用本文的文献

1
Insights From Language-Trained Apes: Brain Network Plasticity and Communication.
Evol Anthropol. 2025 Sep;34(3):e70018. doi: 10.1002/evan.70018.
2
Supplementary motor area microstructure defines the extent of gait impairment in Parkinson's disease.
NPJ Parkinsons Dis. 2025 Aug 25;11(1):260. doi: 10.1038/s41531-025-01119-4.
4
Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex.
iScience. 2025 May 26;28(7):112747. doi: 10.1016/j.isci.2025.112747. eCollection 2025 Jul 18.
5
Planum Temporale Asymmetries in Primates: A Comparative Study in Great Apes and Monkeys.
Am J Biol Anthropol. 2025 Jan;186(1):e25060. doi: 10.1002/ajpa.25060.
7
The uniqueness of human vulnerability to brain aging in great ape evolution.
Sci Adv. 2024 Aug 30;10(35):eado2733. doi: 10.1126/sciadv.ado2733. Epub 2024 Aug 28.
8
Volume electron microscopy reveals 3D synaptic nanoarchitecture in postmortem human prefrontal cortex.
bioRxiv. 2024 Sep 12:2024.02.26.582174. doi: 10.1101/2024.02.26.582174.
9
Between neurons and networks: investigating mesoscale brain connectivity in neurological and psychiatric disorders.
Front Neurosci. 2024 Feb 20;18:1340345. doi: 10.3389/fnins.2024.1340345. eCollection 2024.
10
Transcriptional cartography integrates multiscale biology of the human cortex.
Elife. 2024 Feb 7;12:RP86933. doi: 10.7554/eLife.86933.

本文引用的文献

1
Distinctive neurons of the anterior cingulate and frontoinsular cortex: a historical perspective.
Cereb Cortex. 2012 Feb;22(2):245-50. doi: 10.1093/cercor/bhr005. Epub 2011 Jun 8.
2
The human brain: rewired and running hot.
Ann N Y Acad Sci. 2011 May;1225 Suppl 1(Suppl 1):E182-91. doi: 10.1111/j.1749-6632.2011.06001.x.
3
The von Economo neurons in the frontoinsular and anterior cingulate cortex.
Ann N Y Acad Sci. 2011 Apr;1225:59-71. doi: 10.1111/j.1749-6632.2011.06011.x.
4
Rapid metabolic evolution in human prefrontal cortex.
Proc Natl Acad Sci U S A. 2011 Apr 12;108(15):6181-6. doi: 10.1073/pnas.1019164108. Epub 2011 Mar 28.
5
Primate prefrontal cortex evolution: human brains are the extreme of a lateralized ape trend.
Brain Behav Evol. 2011;77(2):67-78. doi: 10.1159/000323671. Epub 2011 Feb 17.
6
Biochemical specificity of von Economo neurons in hominoids.
Am J Hum Biol. 2011 Jan-Feb;23(1):22-8. doi: 10.1002/ajhb.21135.
7
Spatial organization of neurons in the frontal pole sets humans apart from great apes.
Cereb Cortex. 2011 Jul;21(7):1485-97. doi: 10.1093/cercor/bhq191. Epub 2010 Nov 23.
8
Patterns of differences in brain morphology in humans as compared to extant apes.
J Hum Evol. 2011 Jan;60(1):94-105. doi: 10.1016/j.jhevol.2010.09.007. Epub 2010 Nov 5.
9
A voxel-based morphometry analysis of white matter asymmetries in chimpanzees (Pan troglodytes).
Brain Behav Evol. 2010;76(2):93-100. doi: 10.1159/000319010. Epub 2010 Sep 29.
10
Frontal cortex and the discovery of abstract action rules.
Neuron. 2010 Apr 29;66(2):315-26. doi: 10.1016/j.neuron.2010.03.025.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验