Suppr超能文献

α-突触核蛋白在磷脂囊泡上形成纤维的结构中间体。

Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles.

机构信息

Center for Biophysics and Computational Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States.

出版信息

J Am Chem Soc. 2012 Mar 21;134(11):5090-9. doi: 10.1021/ja209019s. Epub 2012 Mar 12.

Abstract

α-Synuclein (AS) fibrils are the main protein component of Lewy bodies, the pathological hallmark of Parkinson's disease and other related disorders. AS forms helices that bind phospholipid membranes with high affinity, but no atomic level data for AS aggregation in the presence of lipids is yet available. Here, we present direct evidence of a conversion from α-helical conformation to β-sheet fibrils in the presence of anionic phospholipid vesicles and direct conversion to β-sheet fibrils in their absence. We have trapped intermediate states throughout the fibril formation pathways to examine the structural changes using solid-state NMR spectroscopy and electron microscopy. The comparison between mature AS fibrils formed in aqueous buffer and those derived in the presence of anionic phospholipids demonstrates no major changes in the overall fibril fold. However, a site-specific comparison of these fibrillar states demonstrates major perturbations in the N-terminal domain with a partial disruption of the long β-strand located in the 40s and small perturbations in residues located in the "non-β amyloid component" (NAC) domain. Combining all these results, we propose a model for AS fibrillogenesis in the presence of phospholipid vesicles.

摘要

α-突触核蛋白(AS)纤维是路易体的主要蛋白成分,是帕金森病和其他相关疾病的病理标志。AS 形成与磷脂膜具有高亲和力的螺旋,但目前还没有关于脂质存在下 AS 聚集的原子水平数据。在这里,我们提供了在阴离子磷脂囊泡存在下从 α-螺旋构象到 β-片层纤维转化的直接证据,以及在不存在的情况下直接转化为 β-片层纤维的直接证据。我们在整个纤维形成途径中捕获了中间状态,使用固态 NMR 光谱和电子显微镜检查结构变化。将在水性缓冲液中形成的成熟 AS 纤维与在阴离子磷脂存在下衍生的纤维进行比较,证明在整体纤维折叠中没有重大变化。然而,对这些纤维状态的特异性比较表明,N 端结构域存在重大干扰,位于 40s 的长 β-链部分破坏,位于“非-β 淀粉样成分”(NAC)结构域的残基存在小干扰。综合所有这些结果,我们提出了在磷脂囊泡存在下 AS 纤维形成的模型。

相似文献

1
Structural intermediates during α-synuclein fibrillogenesis on phospholipid vesicles.
J Am Chem Soc. 2012 Mar 21;134(11):5090-9. doi: 10.1021/ja209019s. Epub 2012 Mar 12.
2
The fold of alpha-synuclein fibrils.
Proc Natl Acad Sci U S A. 2008 Jun 24;105(25):8637-42. doi: 10.1073/pnas.0712179105. Epub 2008 Jun 12.
3
Multiple tight phospholipid-binding modes of alpha-synuclein revealed by solution NMR spectroscopy.
J Mol Biol. 2009 Jul 24;390(4):775-90. doi: 10.1016/j.jmb.2009.05.066. Epub 2009 May 27.
4
Membrane lipid co-aggregation with α-synuclein fibrils.
PLoS One. 2013 Oct 11;8(10):e77235. doi: 10.1371/journal.pone.0077235. eCollection 2013.
5
Structural comparison of mouse and human α-synuclein amyloid fibrils by solid-state NMR.
J Mol Biol. 2012 Jun 29;420(1-2):99-111. doi: 10.1016/j.jmb.2012.04.009. Epub 2012 Apr 16.
6
Covalent α-synuclein dimers: chemico-physical and aggregation properties.
PLoS One. 2012;7(12):e50027. doi: 10.1371/journal.pone.0050027. Epub 2012 Dec 13.
7
Solid-state NMR reveals structural differences between fibrils of wild-type and disease-related A53T mutant alpha-synuclein.
J Mol Biol. 2008 Jul 11;380(3):444-50. doi: 10.1016/j.jmb.2008.05.026. Epub 2008 May 17.

引用本文的文献

1
Alpha-Synuclein Fibril Structures Cluster into Distinct Classes.
bioRxiv. 2025 May 2:2025.04.30.651534. doi: 10.1101/2025.04.30.651534.
3
Membrane Association of Intrinsically Disordered Proteins.
Annu Rev Biophys. 2025 May;54(1):275-302. doi: 10.1146/annurev-biophys-070124-092816. Epub 2025 Feb 14.
4
Lipidic folding pathway of α-Synuclein via a toxic oligomer.
Nat Commun. 2025 Jan 17;16(1):760. doi: 10.1038/s41467-025-55849-3.
5
Characterization of α-synuclein oligomers formed in the presence of lipid vesicles.
Biochem Biophys Rep. 2024 Mar 19;38:101687. doi: 10.1016/j.bbrep.2024.101687. eCollection 2024 Jul.
6
α-Synuclein and biological membranes: the danger of loving too much.
Chem Commun (Camb). 2023 Jul 13;59(57):8769-8778. doi: 10.1039/d3cc01682j.
8
Membrane-induced tau amyloid fibrils.
Commun Biol. 2023 Apr 28;6(1):467. doi: 10.1038/s42003-023-04847-6.
9
SUMO1 hinders α-Synuclein fibrillation by inducing structural compaction.
Protein Sci. 2023 May;32(5):e4632. doi: 10.1002/pro.4632.
10
Untwisted α-Synuclein Filaments Formed in the Presence of Lipid Vesicles.
Biochemistry. 2022 Sep 6;61(17):1766-1773. doi: 10.1021/acs.biochem.2c00283. Epub 2022 Aug 24.

本文引用的文献

1
Yet another polymorph of α-synuclein: solid-state sequential assignments.
Biomol NMR Assign. 2014 Oct;8(2):395-404. doi: 10.1007/s12104-013-9526-y. Epub 2013 Oct 10.
2
α-Synuclein occurs physiologically as a helically folded tetramer that resists aggregation.
Nature. 2011 Aug 14;477(7362):107-10. doi: 10.1038/nature10324.
3
Structured regions of α-synuclein fibrils include the early-onset Parkinson's disease mutation sites.
J Mol Biol. 2011 Aug 26;411(4):881-95. doi: 10.1016/j.jmb.2011.06.026. Epub 2011 Jun 21.
4
Solid-state NMR study of the charge-transfer complex between ubiquinone-8 and disulfide bond generating membrane protein DsbB.
J Am Chem Soc. 2011 Mar 30;133(12):4359-66. doi: 10.1021/ja107775w. Epub 2011 Mar 4.
6
Supramolecular interactions probed by 13C-13C solid-state NMR spectroscopy.
J Am Chem Soc. 2010 Nov 3;132(43):15164-6. doi: 10.1021/ja107460j.
8
What can solid state NMR contribute to our understanding of protein folding?
Biophys Chem. 2010 Sep;151(1-2):10-21. doi: 10.1016/j.bpc.2010.05.009. Epub 2010 May 23.
10
Light activation of rhodopsin: insights from molecular dynamics simulations guided by solid-state NMR distance restraints.
J Mol Biol. 2010 Feb 26;396(3):510-27. doi: 10.1016/j.jmb.2009.12.003. Epub 2009 Dec 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验