Suppr超能文献

单个 FoF1-ATP 合酶内的三色Förster 共振能量转移:实时监测旋转双分子马达的弹性变形。

Three-color Förster resonance energy transfer within single F₀F₁-ATP synthases: monitoring elastic deformations of the rotary double motor in real time.

机构信息

University of Stuttgart, 3rd Institute of Physics, Pfaffenwaldring 57, 70550 Stuttgart, Germany.

出版信息

J Biomed Opt. 2012 Jan;17(1):011004. doi: 10.1117/1.JBO.17.1.011004.

Abstract

Catalytic activities of enzymes are associated with elastic conformational changes of the protein backbone. Förster-type resonance energy transfer, commonly referred to as FRET, is required in order to observe the dynamics of relative movements within the protein. Förster-type resonance energy transfer between two specifically attached fluorophores provides a ruler with subnanometer resolution between 3 and 8 nm, submillisecond time resolution for time trajectories of conformational changes, and single-molecule sensitivity to overcome the need for synchronization of various conformations. F(O)F(1)-ATP synthase is a rotary molecular machine which catalyzes the formation of adenosine triphosphate (ATP). The Escherichia coli enzyme comprises a proton driven 10 stepped rotary F(O) motor connected to a 3-stepped F(1) motor, where ATP is synthesized. This mismatch of step sizes will result in elastic deformations within the rotor parts. We present a new single-molecule FRET approach to observe both rotary motors simultaneously in a single F(O)F(1)-ATP synthase at work. We labeled this enzyme with three fluorophores, specifically at the stator part and at the two rotors. Duty cycle-optimized with alternating laser excitation, referred to as DCO-ALEX, allowed to control enzyme activity and to unravel associated transient twisting within the rotors of a single enzyme during ATP hydrolysis and ATP synthesis. Monte Carlo simulations revealed that the rotor twisting is larger than 36 deg.

摘要

酶的催化活性与蛋白质骨架的弹性构象变化有关。为了观察蛋白质内部相对运动的动态,需要进行福斯特型共振能量转移(Förster-type resonance energy transfer),通常称为 FRET。两个特定附着的荧光团之间的福斯特型共振能量转移提供了一个分辨率为亚纳米级(3 到 8nm)的标尺,对于构象变化的时间轨迹具有亚毫秒级的时间分辨率,并且具有单分子灵敏度,可以克服对各种构象同步的需求。F(O)F(1)-ATP 合酶是一种旋转分子机器,可催化三磷酸腺苷(ATP)的形成。大肠杆菌酶由质子驱动的 10 步旋转 F(O) 马达连接到 3 步 F(1)马达组成,ATP 在此合成。这种步长不匹配将导致转子部件内的弹性变形。我们提出了一种新的单分子 FRET 方法,可在单个工作中的 F(O)F(1)-ATP 合酶中同时观察两个旋转马达。我们用三个荧光团标记该酶,分别标记在定子部分和两个转子上。通过交替激光激发进行的占空比优化(Duty cycle-optimized with alternating laser excitation),称为 DCO-ALEX,可控制酶的活性,并在 ATP 水解和 ATP 合成过程中解开单个酶转子内的相关瞬时扭曲。蒙特卡罗模拟表明,转子的扭曲大于 36 度。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验