Department of Chemistry, Ludwig-Maximilians University Munich, Munich, Germany.
Center for NanoScience, Ludwig-Maximilians University Munich, Munich, Germany.
Nat Commun. 2024 Jan 23;15(1):690. doi: 10.1038/s41467-024-44901-3.
It is estimated that two-thirds of all proteins in higher organisms are composed of multiple domains, many of them containing discontinuous folds. However, to date, most in vitro protein folding studies have focused on small, single-domain proteins. As a model system for a two-domain discontinuous protein, we study the unfolding/refolding of a slow-folding double mutant of the maltose binding protein (DM-MBP) using single-molecule two- and three-color Förster Resonance Energy Transfer experiments. We observe a dynamic folding intermediate population in the N-terminal domain (NTD), C-terminal domain (CTD), and at the domain interface. The dynamic intermediate fluctuates rapidly between unfolded states and compact states, which have a similar FRET efficiency to the folded conformation. Our data reveals that the delayed folding of the NTD in DM-MBP is imposed by an entropic barrier with subsequent folding of the highly dynamic CTD. Notably, accelerated DM-MBP folding is routed through the same dynamic intermediate within the cavity of the GroEL/ES chaperone system, suggesting that the chaperonin limits the conformational space to overcome the entropic folding barrier. Our study highlights the subtle tuning and co-dependency in the folding of a discontinuous multi-domain protein.
据估计,高等生物中三分之二的蛋白质由多个结构域组成,其中许多结构域含有不连续的折叠。然而,迄今为止,大多数体外蛋白质折叠研究都集中在小的单结构域蛋白质上。作为一个两结构域不连续蛋白质的模型系统,我们使用单分子双色和三色Förster 共振能量转移实验研究麦芽糖结合蛋白(DM-MBP)的一个缓慢折叠的双突变体的展开/折叠。我们在 N 端结构域(NTD)、C 端结构域(CTD)和结构域界面观察到一个动态折叠中间态群体。该动态中间态在展开态和紧凑态之间快速波动,其Förster 共振能量转移效率与折叠构象相似。我们的数据表明,DM-MBP 中 NTD 的延迟折叠是由一个熵障碍引起的,随后是高度动态的 CTD 的折叠。值得注意的是,DM-MBP 的折叠速度加快是通过 GroEL/ES 伴侣蛋白系统腔体内的相同动态中间态实现的,这表明伴侣蛋白限制了构象空间以克服熵折叠障碍。我们的研究强调了不连续多结构域蛋白质折叠中的微妙调节和相互依存关系。