Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany.
J Phys Condens Matter. 2012 Mar 14;24(10):104023. doi: 10.1088/0953-8984/24/10/104023. Epub 2012 Feb 21.
Bottom-up fabrication of graphene nanoribbons (GNRs) from halogen-terminated aromatic precursors is a promising method for achieving atomically precise nanoribbons at competitive yields. GNR fabrication proceeds via the polymerization of the precursors and successive dehydrogenation. By first principles density functional theory calculations, we perform a systematic characterization of the polymeric precursors and the corresponding graphene nanoribbons in terms of structural and electronic properties, and we compute the Raman and infrared spectra. The band structure properties are examined by considering the bonding features and the partial charge densities of the structures. The physical origin of the infrared and Raman peaks is investigated in terms of the morphology and vibrational properties of the precursors and products. We show that light spectroscopy provides a unique fingerprint for each type of GNR, which may be used to monitor the quality of the final products and the kinetics of the synthesis process.
从卤代芳烃前体自上而下制造石墨烯纳米带(GNRs)是一种很有前途的方法,可以在具有竞争力的产率下获得原子精度的纳米带。GNR 的制造通过前体的聚合和连续脱氢进行。通过第一性原理密度泛函理论计算,我们对聚合前体及其相应的石墨烯纳米带进行了系统的结构和电子性质的表征,并计算了拉曼和红外光谱。通过考虑结构的键合特征和部分电荷密度来研究带结构性质。根据前体和产物的形态和振动特性,研究了红外和拉曼峰的物理起源。我们表明,光光谱为每种类型的 GNR 提供了独特的指纹,可以用于监测最终产品的质量和合成过程的动力学。