Suppr超能文献

不同地区的欧洲山毛榉自然种群的空间遗传结构存在广泛差异及其对 SGS 可比性的影响。

Wide variation in spatial genetic structure between natural populations of the European beech (Fagus sylvatica) and its implications for SGS comparability.

机构信息

Biological and Environmental Sciences, School of Natural Sciences, University of Stirling, Stirling, UK.

出版信息

Heredity (Edinb). 2012 Jun;108(6):633-9. doi: 10.1038/hdy.2012.1. Epub 2012 Feb 22.

Abstract

Identification and quantification of spatial genetic structure (SGS) within populations remains a central element of understanding population structure at the local scale. Understanding such structure can inform on aspects of the species' biology, such as establishment patterns and gene dispersal distance, in addition to sampling design for genetic resource management and conservation. However, recent work has identified that variation in factors such as sampling methodology, population characteristics and marker system can all lead to significant variation in SGS estimates. Consequently, the extent to which estimates of SGS can be relied on to inform on the biology of a species or differentiate between experimental treatments is open to doubt. Following on from a recent report of unusually extensive SGS when assessed using amplified fragment length polymorphisms in the tree Fagus sylvatica, we explored whether this marker system led to similarly high estimates of SGS extent in other apparently similar populations of this species. In the three populations assessed, SGS extent was even stronger than this previously reported maximum, extending up to 360 m, an increase in up to 800% in comparison with the generally accepted maximum of 30-40 m based on the literature. Within this species, wide variation in SGS estimates exists, whether quantified as SGS intensity, extent or the Sp parameter. Consequently, we argue that greater standardization should be applied in sample design and SGS estimation and highlight five steps that can be taken to maximize the comparability between SGS estimates.

摘要

鉴定和量化群体内的空间遗传结构(SGS)仍然是理解局部种群结构的核心要素。了解这种结构可以为物种生物学的各个方面提供信息,例如建立模式和基因扩散距离,此外还可以为遗传资源管理和保护的采样设计提供信息。然而,最近的研究表明,采样方法、种群特征和标记系统等因素的变化都会导致 SGS 估计值的显著变化。因此,SGS 估计值在多大程度上可以为物种生物学提供信息或区分实验处理仍存在疑问。继最近使用扩增片段长度多态性(AFLP)在山毛榉属树种中评估时发现异常广泛的 SGS 之后,我们探讨了这种标记系统是否会导致该物种其他看似相似种群中同样高的 SGS 程度估计值。在所评估的三个种群中,SGS 程度甚至比之前报道的最大值更强,延伸至 360 米,与文献中普遍接受的最大值 30-40 米相比,增加了 800%。在该物种中,SGS 估计值存在广泛的差异,无论是以 SGS 强度、程度还是 Sp 参数来衡量。因此,我们认为应该在样本设计和 SGS 估计中应用更大的标准化,并强调可以采取五个步骤来最大限度地提高 SGS 估计值之间的可比性。

相似文献

6
Microsatellite primers for the endangered beech tree, Fagus hayatae (Fagaceae).
Am J Bot. 2012 Nov;99(11):e453-6. doi: 10.3732/ajb.1200118. Epub 2012 Oct 29.
8
Genome-environment association study suggests local adaptation to climate at the regional scale in Fagus sylvatica.
New Phytol. 2016 Apr;210(2):589-601. doi: 10.1111/nph.13809. Epub 2016 Jan 18.

引用本文的文献

3
Fine-scale spatial genetic structure in predominantly selfing plants with limited seed dispersal: A rule or exception?
Plant Divers. 2016 May 24;38(2):59-64. doi: 10.1016/j.pld.2016.03.001. eCollection 2016 Apr.
4
Spatial Scales of Genetic Structure in Free-Standing and Strangler Figs (Ficus, Moraceae) Inhabiting Neotropical Forests.
PLoS One. 2015 Jul 30;10(7):e0133581. doi: 10.1371/journal.pone.0133581. eCollection 2015.
5
Clonality as a driver of spatial genetic structure in populations of clonal tree species.
J Plant Res. 2015 Sep;128(5):731-45. doi: 10.1007/s10265-015-0742-7. Epub 2015 Jul 8.
7
Dioecy, more than monoecy, affects plant spatial genetic structure: the case study of Ficus.
Ecol Evol. 2013 Sep;3(10):3495-508. doi: 10.1002/ece3.739. Epub 2013 Aug 28.
9
Tropical breeding systems: one and done?
Heredity (Edinb). 2012 Dec;109(6):330-1. doi: 10.1038/hdy.2012.47. Epub 2012 Aug 15.

本文引用的文献

1
Spatial autocorrelation and the scaling of species-environment relationships.
Ecology. 2010 Aug;91(8):2455-65. doi: 10.1890/09-1359.1.
2
Origin of spatial genetic structure in an expanding oak population.
Mol Ecol. 2010 Feb;19(3):459-71. doi: 10.1111/j.1365-294X.2009.04492.x. Epub 2010 Jan 11.
5
Distribution and fine-scale spatial-genetic structure in British wild cherry (Prunus avium L.).
Heredity (Edinb). 2007 May;98(5):274-83. doi: 10.1038/sj.hdy.6800935. Epub 2007 Jan 24.
6
Fine-scale genetic structure and gene dispersal inferences in 10 neotropical tree species.
Mol Ecol. 2006 Feb;15(2):559-71. doi: 10.1111/j.1365-294X.2005.02785.x.
8
Genotyping errors: causes, consequences and solutions.
Nat Rev Genet. 2005 Nov;6(11):847-59. doi: 10.1038/nrg1707.
10
Optimal sampling strategy for estimation of spatial genetic structure in tree populations.
Heredity (Edinb). 2005 Oct;95(4):281-9. doi: 10.1038/sj.hdy.6800709.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验