Suppr超能文献

在密度跃层中进行低雷诺数游泳。

Low-Reynolds-number swimming at pycnoclines.

机构信息

Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3856-61. doi: 10.1073/pnas.1116210109. Epub 2012 Feb 21.

Abstract

Microorganisms play pivotal functions in the trophic dynamics and biogeochemistry of aquatic ecosystems. Their concentrations and activities often peak at localized hotspots, an important example of which are pycnoclines, where water density increases sharply with depth due to gradients in temperature or salinity. At pycnoclines organisms are exposed to different environmental conditions compared to the bulk water column, including reduced turbulence, slow mass transfer, and high particle and predator concentrations. Here we show that, at an even more fundamental level, the density stratification itself can affect microbial ecology at pycnoclines, by quenching the flow signature, increasing the energetic expenditure, and stifling the nutrient uptake of motile organisms. We demonstrate this through numerical simulations of an archetypal low-Reynolds-number swimmer, the "squirmer." We identify the Richardson number--the ratio of buoyancy forces to viscous forces--as the fundamental parameter that quantifies the effects of stratification. These results demonstrate an unexpected effect of buoyancy on low-Reynolds-number swimming, potentially affecting a broad range of abundant organisms living at pycnoclines in oceans and lakes.

摘要

微生物在水生生态系统的营养动态和生物地球化学中起着关键作用。它们的浓度和活性通常在局部热点达到峰值,其中一个重要的例子是密度跃层,由于温度或盐度的梯度,水的密度在该区域随深度急剧增加。在密度跃层中,与主体水柱相比,生物体暴露在不同的环境条件下,包括减少湍流、缓慢的物质转移以及高浓度的颗粒和捕食者。在这里,我们表明,在更基本的层面上,密度分层本身可以通过抑制流动特征、增加能量消耗和抑制运动生物的养分吸收来影响密度跃层处的微生物生态学。我们通过对典型低雷诺数游泳者“蠕动者”的数值模拟来证明这一点。我们确定了理查森数(浮力与粘性力的比值)作为量化分层影响的基本参数。这些结果表明,浮力对低雷诺数游泳有意外的影响,可能会影响到海洋和湖泊中大量生活在密度跃层处的丰富生物。

相似文献

1
Low-Reynolds-number swimming at pycnoclines.在密度跃层中进行低雷诺数游泳。
Proc Natl Acad Sci U S A. 2012 Mar 6;109(10):3856-61. doi: 10.1073/pnas.1116210109. Epub 2012 Feb 21.
2
Reorientation of elongated particles at density interfaces.细长颗粒在密度界面处的重新定向。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Sep;90(3):033013. doi: 10.1103/PhysRevE.90.033013. Epub 2014 Sep 22.
4
Hydrodynamic interaction of swimming organisms in an inertial regime.惯性区中游泳生物的水动力相互作用。
Phys Rev E. 2016 Nov;94(5-1):053104. doi: 10.1103/PhysRevE.94.053104. Epub 2016 Nov 4.
5
Microbial ecology of Antarctic aquatic systems.南极水生系统的微生物生态学。
Nat Rev Microbiol. 2015 Nov;13(11):691-706. doi: 10.1038/nrmicro3549. Epub 2015 Oct 12.
6
Swimming at low Reynolds number in fluids with odd, or Hall, viscosity.在具有奇数或霍尔粘度的流体中以低雷诺数游泳。
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Apr;89(4):043019. doi: 10.1103/PhysRevE.89.043019. Epub 2014 Apr 28.
8
Marine microbes see a sea of gradients.海洋微生物看到了一片梯度的海洋。
Science. 2012 Nov 2;338(6107):628-33. doi: 10.1126/science.1208929.

引用本文的文献

1
The distribution of subsurface microplastics in the ocean.海洋中表层以下微塑料的分布情况。
Nature. 2025 May;641(8061):51-61. doi: 10.1038/s41586-025-08818-1. Epub 2025 Apr 30.
2
Densitaxis: Active particle motion in density gradients.密度趋性:密度梯度中的活性粒子运动。
Proc Natl Acad Sci U S A. 2024 Jul 2;121(27):e2405466121. doi: 10.1073/pnas.2405466121. Epub 2024 Jun 27.
8
Simulating squirmers with multiparticle collision dynamics.用多粒子碰撞动力学模拟蠕动体。
Eur Phys J E Soft Matter. 2018 May 15;41(5):61. doi: 10.1140/epje/i2018-11670-3.

本文引用的文献

1
Locomotion by tangential deformation in a polymeric fluid.聚合物流体中切向变形引起的运动
Phys Rev E Stat Nonlin Soft Matter Phys. 2011 Jan;83(1 Pt 1):011901. doi: 10.1103/PhysRevE.83.011901. Epub 2011 Jan 6.
2
Direct measurement of the flow field around swimming microorganisms.直接测量游泳微生物周围的流场。
Phys Rev Lett. 2010 Oct 15;105(16):168101. doi: 10.1103/PhysRevLett.105.168101. Epub 2010 Oct 11.
3
The fluid dynamics of swimming by jumping in copepods.桡足类动物跳跃式游泳的流体动力学。
J R Soc Interface. 2011 Aug 7;8(61):1090-103. doi: 10.1098/rsif.2010.0481. Epub 2011 Jan 5.
4
Optimal feeding and swimming gaits of biflagellated organisms.双鞭毛生物的最佳进食和游动步态。
Proc Natl Acad Sci U S A. 2011 Jan 18;108(3):1001-6. doi: 10.1073/pnas.1011185108. Epub 2011 Jan 3.
6
Effective viscosity of microswimmer suspensions.微泳者悬浮液的有效黏度。
Phys Rev Lett. 2010 Mar 5;104(9):098102. doi: 10.1103/PhysRevLett.104.098102. Epub 2010 Mar 3.
7
Reduction of viscosity in suspension of swimming bacteria.悬浮游动细菌中悬浮液的粘度降低。
Phys Rev Lett. 2009 Oct 2;103(14):148101. doi: 10.1103/PhysRevLett.103.148101. Epub 2009 Sep 29.
8
Dancing volvox: hydrodynamic bound states of swimming algae.舞动的团藻:游动藻类的流体动力学束缚态
Phys Rev Lett. 2009 Apr 24;102(16):168101. doi: 10.1103/PhysRevLett.102.168101. Epub 2009 Apr 20.
9
Diffusion and spatial correlations in suspensions of swimming particles.游动粒子悬浮液中的扩散与空间相关性。
Phys Rev Lett. 2008 Jun 20;100(24):248101. doi: 10.1103/PhysRevLett.100.248101. Epub 2008 Jun 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验