Suppr超能文献

高通量生物和临床数据中有理数上的分形样分布。

Fractal-like distributions over the rational numbers in high-throughput biological and clinical data.

机构信息

Department of Biomedical Informatics, Center for Computational Biology and Bioinformatics, Columbia University, New York, NY 10032, USA.

出版信息

Sci Rep. 2011;1:191. doi: 10.1038/srep00191. Epub 2011 Dec 13.

Abstract

Recent developments in extracting and processing biological and clinical data are allowing quantitative approaches to studying living systems. High-throughput sequencing (HTS), expression profiles, proteomics, and electronic health records (EHR) are some examples of such technologies. Extracting meaningful information from those technologies requires careful analysis of the large volumes of data they produce. In this note, we present a set of fractal-like distributions that commonly appear in the analysis of such data. The first set of examples are drawn from a HTS experiment. Here, the distributions appear as part of the evaluation of the error rate of the sequencing and the identification of tumorogenic genomic alterations. The other examples are obtained from risk factor evaluation and analysis of relative disease prevalence and co-mordbidity as these appear in EHR. The distributions are also relevant to identification of subclonal populations in tumors and the study of quasi-species and intrahost diversity of viral populations.

摘要

生物和临床数据的提取和处理方面的最新进展使得定量方法能够用于研究生命系统。高通量测序(HTS)、表达谱、蛋白质组学和电子健康记录(EHR)就是此类技术的一些例子。要从这些技术中提取有意义的信息,需要对它们产生的大量数据进行仔细分析。在本说明中,我们提出了一组在分析此类数据时常见的分形分布。第一组示例来自 HTS 实验。在这里,这些分布是作为测序错误率评估和肿瘤发生基因组改变识别的一部分出现的。其他示例是从风险因素评估以及相对疾病流行率和合并症分析中获得的,这些示例出现在 EHR 中。这些分布也与肿瘤中亚克隆群体的识别以及病毒群体的准种和宿主内多样性的研究有关。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f1a9/3240948/a5a2c6ad178f/srep00191-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验