Suppr超能文献

慢性兴奋性毒素诱导的神经元培养模型中的轴突变性。

Chronic excitotoxin-induced axon degeneration in a compartmented neuronal culture model.

机构信息

Wicking Dementia Research and Education Centre, Menzies Research Institute Tasmania, University of Tasmania, Hobart, TAS 7000, Australia.

出版信息

ASN Neuro. 2012 Feb 23;4(1):e00076. doi: 10.1042/AN20110031.

Abstract

Glutamate excitotoxicity is a major pathogenic process implicated in many neurodegenerative conditions, including AD (Alzheimer's disease) and following traumatic brain injury. Occurring predominantly from over-stimulation of ionotropic glutamate receptors located along dendrites, excitotoxic axonal degeneration may also occur in white matter tracts. Recent identification of axonal glutamate receptor subunits within axonal nanocomplexes raises the possibility of direct excitotoxic effects on axons. Individual neuronal responses to excitotoxicity are highly dependent on the complement of glutamate receptors expressed by the cell, and the localization of the functional receptors. To enable isolation of distal axons and targeted excitotoxicity, murine cortical neuron cultures were prepared in compartmented microfluidic devices, such that distal axons were isolated from neuronal cell bodies. Within the compartmented culture system, cortical neurons developed to relative maturity at 11 DIV (days in vitro) as demonstrated by the formation of dendritic spines and clustering of the presynaptic protein synaptophysin. The isolated distal axons retained growth cone structures in the absence of synaptic targets, and expressed glutamate receptor subunits. Glutamate treatment (100 μM) to the cell body chamber resulted in widespread degeneration within this chamber and degeneration of distal axons in the other chamber. Glutamate application to the distal axon chamber triggered a lesser degree of axonal degeneration without degenerative changes in the untreated somal chamber. These data indicate that in addition to current mechanisms of indirect axonal excitotoxicity, the distal axon may be a primary target for excitotoxicity in neurodegenerative conditions.

摘要

谷氨酸兴奋性毒性是许多神经退行性疾病的主要发病机制,包括 AD(阿尔茨海默病)和创伤性脑损伤后。兴奋性毒性轴突退变主要发生在树突上的离子型谷氨酸受体过度刺激时,也可能发生在白质束中。最近在轴突纳米复合物中鉴定出轴突谷氨酸受体亚基,这增加了对轴突直接兴奋性毒性作用的可能性。单个神经元对兴奋性毒性的反应高度依赖于细胞表达的谷氨酸受体的组成和功能受体的定位。为了能够分离远端轴突和靶向兴奋性毒性,在分隔式微流控装置中制备了鼠皮质神经元培养物,使得远端轴突与神经元胞体分离。在分隔培养系统中,皮质神经元在 11 天体外培养(DIV)时发育到相对成熟,表现为树突棘的形成和突触前蛋白突触小体的聚集。在没有突触靶点的情况下,分离的远端轴突保留生长锥结构,并表达谷氨酸受体亚基。将谷氨酸(100 μM)施用于胞体腔室会导致该腔室中广泛的变性和另一个腔室中远端轴突的变性。将谷氨酸应用于远端轴突腔室会引发较小程度的轴突变性,而未经处理的胞体腔室没有退行性变化。这些数据表明,除了目前间接轴突兴奋性毒性的机制外,远端轴突可能是神经退行性疾病中兴奋性毒性的主要靶标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f2a4/3284768/45d8e8704e37/an004e076f01.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验