Suppr超能文献

基于偏光皮肤镜图像中溃疡特征的提取,对基底细胞癌与良性病变进行鉴别。

Discrimination of basal cell carcinoma from benign lesions based on extraction of ulcer features in polarized-light dermoscopy images.

机构信息

Department of Electrical and Computer Engineering, Southern Illinois University Edwardsville, Edwardsville, IL, USA.

出版信息

Skin Res Technol. 2012 Nov;18(4):471-5. doi: 10.1111/j.1600-0846.2011.00595.x. Epub 2012 Feb 22.

Abstract

BACKGROUND

Ulcers are frequently visible in magnified, cross-polarized, dermoscopy images of basal cell carcinoma. An ulcer without a history of trauma, a so-called 'atraumatic' ulcer, is an important sign of basal cell carcinoma, the most common skin cancer. Distinguishing such ulcers from similar features found in benign lesions is challenging. In this research, color and texture features of ulcers are analyzed to discriminate basal cell carcinoma from benign lesions.

METHODS

Ulcers in polarized-light dermoscopy images of 49 biopsy-proven basal cell carcinomas were identified and manually selected. For 153 polarized-light dermoscopy images of benign lesions, those areas that most closely mimicked ulcers were similarly selected. Fifteen measures were analyzed over the areas of ulcers and ulcer mimics. Six of those measures were texture measures: energy, variance, smoothness, skewness, uniformity, and entropy. Nine of those measures were color measures: relative measures of red, green, and blue; chromaticity of red, green, and blue; and the ratios blue-to-green, blue-to-red, and green-to-red.

RESULTS

A back-propagation artificial neural network was able to discriminate most of the basal cell carcinoma from benign lesions, with an area under the ROC curve as high as 92.46%, using color and texture features of ulcer areas.

CONCLUSION

Separation of basal cell carcinoma from benign cutaneous lesions using image analysis techniques applied to ulcers is feasible. As ulcers are a critical feature in malignant lesions, this finding may have application in the automatic detection of basal cell carcinoma.

摘要

背景

在放大的、交叉偏振的皮肤镜图像中,基底细胞癌经常可见溃疡。没有创伤史的溃疡,即所谓的“非创伤性”溃疡,是基底细胞癌的一个重要特征,基底细胞癌是最常见的皮肤癌。区分这种溃疡与良性病变中类似的特征具有挑战性。在这项研究中,分析了溃疡的颜色和纹理特征,以区分基底细胞癌和良性病变。

方法

在 49 例经活检证实的基底细胞癌的偏振光皮肤镜图像中识别并手动选择溃疡。对于 153 张良性病变的偏振光皮肤镜图像,选择最接近溃疡的区域。在溃疡和溃疡模拟区域分析了 15 个措施。其中 6 个是纹理措施:能量、方差、平滑度、偏度、均匀性和熵。其中 9 个是颜色措施:红、绿、蓝的相对值;红、绿、蓝的色度;以及蓝-绿、蓝-红和绿-红的比值。

结果

使用溃疡区域的颜色和纹理特征,反向传播人工神经网络能够区分大多数基底细胞癌和良性病变,ROC 曲线下面积高达 92.46%。

结论

使用应用于溃疡的图像分析技术从良性皮肤病变中分离基底细胞癌是可行的。由于溃疡是恶性病变的一个关键特征,这一发现可能在基底细胞癌的自动检测中具有应用价值。

相似文献

本文引用的文献

5
Automatic detection of blue-white veil and related structures in dermoscopy images.皮肤镜图像中蓝白幕及相关结构的自动检测
Comput Med Imaging Graph. 2008 Dec;32(8):670-7. doi: 10.1016/j.compmedimag.2008.08.003. Epub 2008 Sep 19.
10
Photography of dermatological conditions using polarized light.使用偏振光对皮肤病进行摄影。
J Audiov Media Med. 1996 Mar;19(1):5-9. doi: 10.3109/17453059609018381.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验