Suppr超能文献

磷酸化ΔNp63α 通过转录和 microRNA 调节调控自噬信号。

Phospho-ΔNp63α-dependent regulation of autophagic signaling through transcription and micro-RNA modulation.

机构信息

Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Cell Cycle. 2012 Mar 15;11(6):1247-59. doi: 10.4161/cc.11.6.19670.

Abstract

Cisplatin was shown to induce the ataxia telangiectasia mutated (ATM)-dependent phosphorylation of tumor protein p63 isoform, (ΔNp63α), leading to a transcriptional regulation of specific genes implicated in the control of cell death of squamous cell carcinoma (SCC) cells. We previously observed that the cisplatin-induced phosphorylated (p)-ΔNp63α transcriptionally regulates the expression of specific microRNAs (miRNAs) in SCC cells. We found here that cisplatin exposure of SCC cells led to modulation of the members of the autophagic pathway, such as Atg1/Ulk1, Atg3, Atg4A, Atg5, Atg6/Becn1, Atg7, Atg9A and Atg10, by a direct p-ΔNp63α-dependent transcriptional regulation. We further found that specific miRNAs (miR-181a, miR-519a, miR-374a and miR-630), which are critical downstream targets of the p-ΔNp63α, modulated the protein levels of ATG5, ATG6/BECN1, ATG10, ATG12, ATG16L1 and UVRAG, adding another level of expression control for autophagic pathways in SCC cells upon cisplatin exposure. Our data support the notion that the cisplatin-induced p-ΔNp63α could regulate key pathways implicated in response of cancer cells to chemotherapeutics.

摘要

顺铂被证明可诱导共济失调毛细血管扩张突变(ATM)依赖性磷酸化肿瘤蛋白 p63 异构体(ΔNp63α),从而导致与鳞状细胞癌(SCC)细胞死亡控制相关的特定基因的转录调控。我们之前观察到,顺铂诱导的磷酸化(p)-ΔNp63α转录调控 SCC 细胞中特定 microRNAs(miRNAs)的表达。我们在这里发现,顺铂暴露于 SCC 细胞导致自噬途径成员的调节,如 Atg1/Ulk1、Atg3、Atg4A、Atg5、Atg6/Becn1、Atg7、Atg9A 和 Atg10,通过直接的 p-ΔNp63α依赖性转录调控。我们进一步发现,特定的 microRNAs(miR-181a、miR-519a、miR-374a 和 miR-630)是 p-ΔNp63α的关键下游靶标,调节 ATG5、ATG6/BECN1、ATG10、ATG12、ATG16L1 和 UVRAG 的蛋白水平,在顺铂暴露于 SCC 细胞时增加了自噬途径表达控制的另一个水平。我们的数据支持这样一种观点,即顺铂诱导的 p-ΔNp63α可以调节与癌细胞对化疗药物反应相关的关键途径。

相似文献

2
Phospho-ΔNp63α/SREBF1 protein interactions: bridging cell metabolism and cisplatin chemoresistance.
Cell Cycle. 2012 Oct 15;11(20):3810-27. doi: 10.4161/cc.22022. Epub 2012 Sep 5.
3
Phospho-ΔNp63α/Rpn13-dependent regulation of LKB1 degradation modulates autophagy in cancer cells.
Aging (Albany NY). 2010 Dec;2(12):959-68. doi: 10.18632/aging.100249.
5
Phospho-ΔNp63α is a key regulator of the cisplatin-induced microRNAome in cancer cells.
Cell Death Differ. 2011 Jul;18(7):1220-30. doi: 10.1038/cdd.2010.188. Epub 2011 Jan 28.
6
Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure.
Cell Cycle. 2011 Nov 15;10(22):3938-47. doi: 10.4161/cc.10.22.18107.
7
Phospho-ΔNp63α/microRNA feedback regulation in squamous carcinoma cells upon cisplatin exposure.
Cell Cycle. 2013 Feb 15;12(4):684-97. doi: 10.4161/cc.23598. Epub 2013 Jan 23.
8
Phospho-ΔNp63α-responsive microRNAs contribute to the regulation of necroptosis in squamous cell carcinoma upon cisplatin exposure.
FEBS Lett. 2015 May 22;589(12):1352-8. doi: 10.1016/j.febslet.2015.04.020. Epub 2015 Apr 21.
10
Phospho-ΔNp63α regulates AQP3, ALOX12B, CASP14 and CLDN1 expression through transcription and microRNA modulation.
FEBS Lett. 2013 Nov 1;587(21):3581-6. doi: 10.1016/j.febslet.2013.09.023. Epub 2013 Sep 23.

引用本文的文献

1
A Critical Review on microRNAs as Prognostic Biomarkers in Laryngeal Carcinoma.
Int J Mol Sci. 2024 Dec 16;25(24):13468. doi: 10.3390/ijms252413468.
2
MicroRNA-mediated autophagy and drug resistance in cancer: mechanisms and therapeutic strategies.
Discov Oncol. 2024 Nov 16;15(1):662. doi: 10.1007/s12672-024-01525-9.
3
Autophagy-associated biomarkers ULK2, UVRAG, and miRNAs miR-21, miR-126, and miR-374: Prognostic significance in glioma patients.
PLoS One. 2024 Sep 30;19(9):e0311308. doi: 10.1371/journal.pone.0311308. eCollection 2024.
4
MicroRNA-630: A potential guardian against inflammation in diabetic kidney disease.
World J Diabetes. 2024 Sep 15;15(9):1837-1841. doi: 10.4239/wjd.v15.i9.1837.
5
Mechanisms of DNA Damage Response in Mammalian Oocytes.
Adv Anat Embryol Cell Biol. 2024;238:47-68. doi: 10.1007/978-3-031-55163-5_3.
6
An Update on Nucleolar Stress: The Transcriptional Control of Autophagy.
Cells. 2023 Aug 15;12(16):2071. doi: 10.3390/cells12162071.
7
Advances in epigenetic modifications of autophagic process in pulmonary hypertension.
Front Immunol. 2023 Jun 16;14:1206406. doi: 10.3389/fimmu.2023.1206406. eCollection 2023.
8
ZKSCAN3 in severe bacterial lung infection and sepsis-induced immunosuppression.
Lab Invest. 2021 Nov;101(11):1467-1474. doi: 10.1038/s41374-021-00660-z. Epub 2021 Sep 9.
10
The interplay of microRNAs and transcription factors in autophagy regulation in nonalcoholic fatty liver disease.
Exp Mol Med. 2021 Apr;53(4):548-559. doi: 10.1038/s12276-021-00611-0. Epub 2021 Apr 20.

本文引用的文献

1
The end of autophagic cell death?
Autophagy. 2012 Jan;8(1):1-3. doi: 10.4161/auto.8.1.16618. Epub 2012 Jan 1.
2
Phospho-ΔNp63α/miR-885-3p axis in tumor cell life and cell death upon cisplatin exposure.
Cell Cycle. 2011 Nov 15;10(22):3938-47. doi: 10.4161/cc.10.22.18107.
4
Posttranscriptional regulation of miRNAs in the DNA damage response.
RNA Biol. 2011 Nov-Dec;8(6):960-3. doi: 10.4161/rna.8.6.17337. Epub 2011 Nov 1.
7
NAC1 modulates sensitivity of ovarian cancer cells to cisplatin by altering the HMGB1-mediated autophagic response.
Oncogene. 2012 Feb 23;31(8):1055-64. doi: 10.1038/onc.2011.290. Epub 2011 Jul 11.
8
Cleaving Beclin 1 to suppress autophagy in chemotherapy-induced apoptosis.
Autophagy. 2011 Oct;7(10):1239-41. doi: 10.4161/auto.7.10.16490. Epub 2011 Oct 1.
9
A critical role for UVRAG in apoptosis.
Autophagy. 2011 Oct;7(10):1242-4. doi: 10.4161/auto.7.10.16507. Epub 2011 Oct 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验