Hopkins Marine Station of Stanford University, Pacific Grove, CA 93950, USA.
J Exp Biol. 2012 Mar 15;215(Pt 6):934-47. doi: 10.1242/jeb.058958.
As the air temperature of the Earth rises, ecological relationships within a community might shift, in part due to differences in the thermal physiology of species. Prediction of these shifts - an urgent task for ecologists - will be complicated if thermal tolerance itself can rapidly evolve. Here, we employ a mechanistic approach to predict the potential for rapid evolution of thermal tolerance in the intertidal limpet Lottia gigantea. Using biophysical principles to predict body temperature as a function of the state of the environment, and an environmental bootstrap procedure to predict how the environment fluctuates through time, we create hypothetical time-series of limpet body temperatures, which are in turn used as a test platform for a mechanistic evolutionary model of thermal tolerance. Our simulations suggest that environmentally driven stochastic variation of L. gigantea body temperature results in rapid evolution of a substantial 'safety margin': the average lethal limit is 5-7°C above the average annual maximum temperature. This predicted safety margin approximately matches that found in nature, and once established is sufficient, in our simulations, to allow some limpet populations to survive a drastic, century-long increase in air temperature. By contrast, in the absence of environmental stochasticity, the safety margin is dramatically reduced. We suggest that the risk of exceeding the safety margin, rather than the absolute value of the safety margin, plays an underappreciated role in the evolution of thermal tolerance. Our predictions are based on a simple, hypothetical, allelic model that connects genetics to thermal physiology. To move beyond this simple model - and thereby potentially to predict differential evolution among populations and among species - will require significant advances in our ability to translate the details of thermal histories into physiological and population-genetic consequences.
随着地球气温的上升,群落内的生态关系可能会发生变化,部分原因是物种的热生理特性存在差异。如果热耐受能力本身能够快速进化,那么预测这些变化——这对生态学家来说是一项紧迫的任务——将会变得复杂。在这里,我们采用一种机制方法来预测潮间带石鳖 Lottia gigantea 热耐受能力快速进化的潜力。我们利用生物物理原理来预测体温作为环境状态的函数,以及环境引导程序来预测环境随时间的波动情况,从而创建了石鳖体温的假设时间序列,这些序列反过来又被用作热耐受能力的机制进化模型的测试平台。我们的模拟表明,环境驱动的 L. gigantea 体温随机变化导致了实质性的“安全裕度”的快速进化:平均致死极限比年平均最高温度高 5-7°C。这种预测的安全裕度与自然界中发现的安全裕度大致匹配,一旦建立,在我们的模拟中,足以使一些石鳖种群在空气温度剧烈上升一个世纪的情况下生存下来。相比之下,如果没有环境随机性,安全裕度就会大幅降低。我们认为,超出安全裕度的风险,而不是安全裕度的绝对值,在热耐受能力的进化中起着被低估的作用。我们的预测是基于一个简单的、假设的等位基因模型,该模型将遗传学与热生理学联系起来。要超越这个简单的模型——从而有可能预测种群和物种之间的差异进化——我们需要在将热历史的细节转化为生理和种群遗传后果的能力方面取得重大进展。