Center for Estuarine and Marine Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Korringaweg 7, 4401NT Yerseke, The Netherlands.
J Exp Biol. 2012 Mar 15;215(Pt 6):962-7. doi: 10.1242/jeb.060467.
Complexity theory proposes that spatial self-organization, the process whereby small-scale, localized interactions among the components of a system generate complex spatial structures at large spatial scales, explains the formation of autogenic spatial patterns in ecosystems. We question this premise by reviewing three estuarine ecosystems - mussel beds, mudflats and salt marshes - where self-organization has been put forward to explain spatial patterns. Our review highlights that these self-organized estuarine systems are shaped by the combination of small-scale interactions between ecological and physical processes on the one hand, and large-scale physical forcing on the other. More specifically, local interactions generate patchiness at small spatial scales, whereas landscape forcing determines the shape and orientation of these patches in the landscape. We present a framework that illustrates how self-organized ecosystems are shaped by interactions between organisms and physical processes occurring at multiple spatial scales. Moreover, the present review of estuarine systems underlines that scale-dependent feedbacks are capable of explaining spatial patterns that are much more complex than the regular patterns to which they have been applied so far.
复杂性理论提出,空间自组织是指系统组成部分之间的小规模、局部相互作用在大空间尺度上产生复杂空间结构的过程,它解释了生态系统中自生空间模式的形成。我们通过回顾三个河口生态系统——贻贝床、泥滩和盐沼——来质疑这一前提,在这些生态系统中,自组织被提出来解释空间模式。我们的综述强调,这些自组织的河口系统是由生态和物理过程之间的小规模相互作用与大规模物理强迫的组合所塑造的。更具体地说,局部相互作用在小空间尺度上产生斑块性,而景观强迫则决定了这些斑块在景观中的形状和方向。我们提出了一个框架,说明了自组织的生态系统是如何由发生在多个空间尺度上的生物和物理过程之间的相互作用塑造的。此外,本综述强调,尺度相关反馈能够解释比迄今为止应用的规则模式更为复杂的空间模式。