Suppr超能文献

利用三轴加速度数据来识别野生动物的行为模式:以欧洲秃鹫为例介绍一般概念和工具。

Using tri-axial acceleration data to identify behavioral modes of free-ranging animals: general concepts and tools illustrated for griffon vultures.

机构信息

Movement Ecology Laboratory, Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, the Hebrew University of Jerusalem, Jerusalem, Israel.

出版信息

J Exp Biol. 2012 Mar 15;215(Pt 6):986-96. doi: 10.1242/jeb.058602.

Abstract

Integrating biomechanics, behavior and ecology requires a mechanistic understanding of the processes producing the movement of animals. This calls for contemporaneous biomechanical, behavioral and environmental data along movement pathways. A recently formulated unifying movement ecology paradigm facilitates the integration of existing biomechanics, optimality, cognitive and random paradigms for studying movement. We focus on the use of tri-axial acceleration (ACC) data to identify behavioral modes of GPS-tracked free-ranging wild animals and demonstrate its application to study the movements of griffon vultures (Gyps fulvus, Hablizl 1783). In particular, we explore a selection of nonlinear and decision tree methods that include support vector machines, classification and regression trees, random forest methods and artificial neural networks and compare them with linear discriminant analysis (LDA) as a baseline for classifying behavioral modes. Using a dataset of 1035 ground-truthed ACC segments, we found that all methods can accurately classify behavior (80-90%) and, as expected, all nonlinear methods outperformed LDA. We also illustrate how ACC-identified behavioral modes provide the means to examine how vulture flight is affected by environmental factors, hence facilitating the integration of behavioral, biomechanical and ecological data. Our analysis of just over three-quarters of a million GPS and ACC measurements obtained from 43 free-ranging vultures across 9783 vulture-days suggests that their annual breeding schedule might be selected primarily in response to seasonal conditions favoring rising-air columns (thermals) and that rare long-range forays of up to 1750 km from the home range are performed despite potentially heavy energetic costs and a low rate of food intake, presumably to explore new breeding, social and long-term resource location opportunities.

摘要

整合生物力学、行为和生态学需要对产生动物运动的过程有一个机械的理解。这就需要在运动轨迹上同时获得生物力学、行为和环境数据。最近提出的统一运动生态学范式促进了将现有的生物力学、最优化、认知和随机范式整合到运动研究中。我们专注于使用三轴加速度(ACC)数据来识别 GPS 跟踪的自由放养野生动物的行为模式,并展示其在研究食腐秃鹫(Gyps fulvus,Hablizl 1783)运动中的应用。特别是,我们探索了一系列非线性和决策树方法,包括支持向量机、分类和回归树、随机森林方法和人工神经网络,并将它们与线性判别分析(LDA)进行比较,作为分类行为模式的基线。使用 1035 个经过地面验证的 ACC 段数据集,我们发现所有方法都可以准确地对行为进行分类(80-90%),并且所有非线性方法的性能都优于 LDA。我们还说明了如何使用 ACC 识别的行为模式来检查秃鹫飞行如何受到环境因素的影响,从而促进行为、生物力学和生态数据的整合。我们对 43 只自由放养的秃鹫在 9783 只秃鹫日中获得的超过 75 万 GPS 和 ACC 测量数据进行了分析,结果表明,它们的年度繁殖计划可能主要是根据有利于上升气柱(热)的季节性条件选择的,并且尽管存在潜在的高能量成本和低食物摄入量,它们仍然会进行罕见的长达 1750 公里的长途突袭,可能是为了探索新的繁殖、社会和长期资源位置机会。

相似文献

2
Decision-making by a soaring bird: time, energy and risk considerations at different spatio-temporal scales.
Philos Trans R Soc Lond B Biol Sci. 2016 Sep 26;371(1704). doi: 10.1098/rstb.2015.0397.
4
AcceleRater: a web application for supervised learning of behavioral modes from acceleration measurements.
Mov Ecol. 2014 Dec 25;2(1):27. doi: 10.1186/s40462-014-0027-0. eCollection 2014.
6
Effects of heavy metals on biomarkers for oxidative stress in Griffon vulture (Gyps fulvus).
Environ Res. 2014 Feb;129:59-68. doi: 10.1016/j.envres.2013.11.008. Epub 2014 Jan 25.
8
Behavioral plasticity shapes population aging patterns in a long-lived avian scavenger.
Proc Natl Acad Sci U S A. 2024 Aug 27;121(35):e2407298121. doi: 10.1073/pnas.2407298121. Epub 2024 Aug 20.
9
Adult vultures outperform juveniles in challenging thermal soaring conditions.
Sci Rep. 2016 Jun 13;6:27865. doi: 10.1038/srep27865.
10
Assessment of the exposure to heavy metals in Griffon vultures (Gyps fulvus) from the Iberian Peninsula.
Ecotoxicol Environ Saf. 2015 Mar;113:295-301. doi: 10.1016/j.ecoenv.2014.12.016. Epub 2014 Dec 18.

引用本文的文献

1
Using GPS and accelerometer data to precisely record egg laying, incubation and chick hatching of Cinereous Vultures () in-situ.
Biodivers Data J. 2025 Jul 3;13:e150787. doi: 10.3897/BDJ.13.e150787. eCollection 2025.
2
Fine-Scale Movement Data Reveal Primarily Surface Foraging and Nocturnal Flight Activity in the Endangered Bermuda Petrel.
Ecol Evol. 2025 Jun 30;15(7):e71647. doi: 10.1002/ece3.71647. eCollection 2025 Jul.
3
Acceleration Data Reveal Behavioural Responses to Hunting Risk in Scandinavian Brown Bears.
Ecol Evol. 2025 Jun 4;15(6):e71489. doi: 10.1002/ece3.71489. eCollection 2025 Jun.
5
Workload distribution in wild Damaraland mole-rat groups.
Philos Trans R Soc Lond B Biol Sci. 2025 Mar 20;380(1922):20230276. doi: 10.1098/rstb.2023.0276.
6
Territoriality Modulates the Effect of Conspecific Encounters on the Foraging Behaviours of a Mammalian Predator.
Ecol Evol. 2025 Mar 6;15(3):e71058. doi: 10.1002/ece3.71058. eCollection 2025 Mar.
7
Classification of behaviour with low-frequency accelerometers in female wild boar.
PLoS One. 2025 Feb 26;20(2):e0318928. doi: 10.1371/journal.pone.0318928. eCollection 2025.
8
Tracking the Ghosts of the Himalayas: Snow Leopard Conservation Insights From Satellite Collar Data.
Ecol Evol. 2025 Jan 6;15(1):e70802. doi: 10.1002/ece3.70802. eCollection 2025 Jan.
9
A benchmark for computational analysis of animal behavior, using animal-borne tags.
Mov Ecol. 2024 Dec 18;12(1):78. doi: 10.1186/s40462-024-00511-8.
10
Contrasting effects of shooting disturbance on the movement and behavior of sympatric wildfowl species.
Ecol Appl. 2024 Dec;34(8):e3032. doi: 10.1002/eap.3032. Epub 2024 Oct 25.

本文引用的文献

1
A review of accelerometry-based wearable motion detectors for physical activity monitoring.
Sensors (Basel). 2010;10(8):7772-88. doi: 10.3390/s100807772. Epub 2010 Aug 20.
3
Gliding saves time but not energy in Malayan colugos.
J Exp Biol. 2011 Aug 15;214(Pt 16):2690-6. doi: 10.1242/jeb.052993.
4
Poor flight performance in deep-diving cormorants.
J Exp Biol. 2011 Feb 1;214(Pt 3):412-21. doi: 10.1242/jeb.050161.
6
Accelerometry estimates field metabolic rate in giant Australian cuttlefish Sepia apama during breeding.
J Anim Ecol. 2011 Mar;80(2):422-30. doi: 10.1111/j.1365-2656.2010.01758.x. Epub 2010 Sep 28.
7
Assessing the development and application of the accelerometry technique for estimating energy expenditure.
Comp Biochem Physiol A Mol Integr Physiol. 2011 Mar;158(3):305-14. doi: 10.1016/j.cbpa.2010.09.002. Epub 2010 Sep 16.
8
Distinguishing technology from biology: a critical review of the use of GPS telemetry data in ecology.
Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2303-12. doi: 10.1098/rstb.2010.0087.
9
Stochastic modelling of animal movement.
Philos Trans R Soc Lond B Biol Sci. 2010 Jul 27;365(1550):2201-11. doi: 10.1098/rstb.2010.0078.
10
Pushed for time or saving on fuel: fine-scale energy budgets shed light on currencies in a diving bird.
Proc Biol Sci. 2009 Sep 7;276(1670):3149-55. doi: 10.1098/rspb.2009.0683. Epub 2009 Jun 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验