Suppr超能文献

细胞培养中有毒代谢物甲基乙二醛的发生率及潜在影响:综述。

Incidence and potential implications of the toxic metabolite methylglyoxal in cell culture: A review.

机构信息

Department of Bioresource Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR, 97331-3906, USA.

出版信息

Cytotechnology. 1998 May;26(3):173-83. doi: 10.1023/A:1007953628840.

Abstract

Methylglyoxal is a toxic metabolite unavoidably produced in mammalian systems as a by-product of glycolysis. Detoxification of this compound occurs principally through the glyoxalase pathway, which consists of glyoxalase I and glyoxalase II, and requires reduced glutathione as a co-enzyme. Recently, it has been demonstrated that variations in glucose, glutamine and fetal bovine serum levels can cause significant changes in the intracellular concentration of methylglyoxal. More importantly, comparative studies involving wild-type Chinese hamster ovary cells and clones overexpressing glyoxalase I indicate that glucose and glutamine, within the range normally found in cell culture media, can cause decreased cell viability mediated solely through increased production of methylglyoxal. In addition, endogenously produced methylglyoxal has been shown to cause apoptosis in cultured HL60 cells. While the exact mechanism of the impact of methylglyoxal on cultured cells is unknown, methylglyoxal is a potent protein and nucleic acid modifying agent at physiological concentrations and under physiological conditions. Protein modification occurs mainly at arginine, lysine and cysteine residues and is believed to be an important signal for the degradation of senescent proteins. Modification of arginine and lysine results in the irreversible formation of advanced glycation endproducts, whereas modification of cysteine results in the formation of a highly reversible hemithioacetal. Methylglyoxal also forms adducts with nucleic acids, principally with guanyl residues. At high extracellular concentrations, it is genotoxic to cells grown in culture. Even at physiological concentrations (100 nM free methylglyoxal), methylglyoxal can modify unprotected plasmid DNA and cause gene mutation and abnormal gene expression.

摘要

甲基乙二醛是一种有毒的代谢物,不可避免地在哺乳动物系统中作为糖酵解的副产物产生。这种化合物的解毒主要通过糖醛酸途径发生,该途径由糖醛酸酶 I 和糖醛酸酶 II 组成,需要还原型谷胱甘肽作为辅酶。最近,已经证明葡萄糖、谷氨酰胺和胎牛血清水平的变化会导致甲基乙二醛的细胞内浓度发生显著变化。更重要的是,涉及野生型中国仓鼠卵巢细胞和过表达糖醛酸酶 I 克隆的比较研究表明,细胞培养物中正常存在的葡萄糖和谷氨酰胺范围内的水平可以仅通过增加甲基乙二醛的产生而导致细胞活力降低。此外,内源性产生的甲基乙二醛已被证明会导致培养的 HL60 细胞凋亡。虽然甲基乙二醛对培养细胞的影响的确切机制尚不清楚,但在生理浓度和生理条件下,甲基乙二醛是一种有效的蛋白质和核酸修饰剂。蛋白质修饰主要发生在精氨酸、赖氨酸和半胱氨酸残基上,被认为是衰老蛋白质降解的重要信号。精氨酸和赖氨酸的修饰导致不可逆的糖基化终产物的形成,而半胱氨酸的修饰导致高度可逆的半硫缩醛的形成。甲基乙二醛还与核酸形成加合物,主要与鸟苷残基结合。在细胞外高浓度下,它对培养细胞具有遗传毒性。即使在生理浓度(100 nM 游离甲基乙二醛)下,甲基乙二醛也可以修饰未保护的质粒 DNA 并导致基因突变和异常基因表达。

相似文献

1
Incidence and potential implications of the toxic metabolite methylglyoxal in cell culture: A review.
Cytotechnology. 1998 May;26(3):173-83. doi: 10.1023/A:1007953628840.
2
Effect of endogenous methylglyoxal on Chinese hamster ovary cells grown in culture.
Cytotechnology. 1996 Jan;22(1-3):33-42. doi: 10.1007/BF00353922.
4
Glyoxalase II does not support methylglyoxal detoxification but serves as a general trypanothione thioesterase in African trypanosomes.
Mol Biochem Parasitol. 2009 Jan;163(1):19-27. doi: 10.1016/j.molbiopara.2008.09.005. Epub 2008 Sep 19.
6
The Glyoxalase System-New Insights into an Ancient Metabolism.
Antioxidants (Basel). 2020 Oct 1;9(10):939. doi: 10.3390/antiox9100939.
7
Protein Glycation in Plants-An Under-Researched Field with Much Still to Discover.
Int J Mol Sci. 2020 May 30;21(11):3942. doi: 10.3390/ijms21113942.
8
Methylglyoxal, the dark side of glycolysis.
Front Neurosci. 2015 Feb 9;9:23. doi: 10.3389/fnins.2015.00023. eCollection 2015.

引用本文的文献

2
The Maize Gene Confers Salt and Drought Tolerance in Transgenic Plants.
Int J Mol Sci. 2024 Oct 11;25(20):10937. doi: 10.3390/ijms252010937.
3
Glycation Leads to Increased Invasion of Glioblastoma Cells.
Cells. 2023 Apr 23;12(9):1219. doi: 10.3390/cells12091219.
4
Boosting Productivity for Advanced Biomanufacturing by Re-Using Viable Cells.
Front Bioeng Biotechnol. 2023 Feb 16;11:1106292. doi: 10.3389/fbioe.2023.1106292. eCollection 2023.
5
MAIT cells in liver inflammation and fibrosis.
Semin Immunopathol. 2022 Jul;44(4):429-444. doi: 10.1007/s00281-022-00949-1. Epub 2022 May 31.
6
Proteomic insight into soybean response to flooding stress reveals changes in energy metabolism and cell wall modifications.
PLoS One. 2022 May 5;17(5):e0264453. doi: 10.1371/journal.pone.0264453. eCollection 2022.
7
Overexpression of Glyoxalase III gene in transgenic sugarcane confers enhanced performance under salinity stress.
J Plant Res. 2021 Sep;134(5):1083-1094. doi: 10.1007/s10265-021-01300-9. Epub 2021 Apr 22.
8
Black Tea Theaflavin Detoxifies Metabolic Toxins in the Intestinal Tract of Mice.
Mol Nutr Food Res. 2021 Feb;65(4):e2000887. doi: 10.1002/mnfr.202000887. Epub 2021 Jan 12.
9
Fabrication of an electrochemical biosensor with ZnO nanoflakes interface for methylglyoxal quantification in food samples.
Food Sci Biotechnol. 2017 Dec 2;27(1):9-17. doi: 10.1007/s10068-017-0193-0. eCollection 2018 Feb.

本文引用的文献

1
Effect of endogenous methylglyoxal on Chinese hamster ovary cells grown in culture.
Cytotechnology. 1996 Jan;22(1-3):33-42. doi: 10.1007/BF00353922.
2
Metabolic flux analysis of hybridoma cells in different culture media using mass balances.
Biotechnol Bioeng. 1996 May 5;50(3):299-318. doi: 10.1002/(SICI)1097-0290(19960505)50:3<299::AID-BIT9>3.0.CO;2-B.
4
Effects of ammonia and lactate on hybridoma growth, metabolism, and antibody production.
Biotechnol Bioeng. 1992 Feb 20;39(4):418-31. doi: 10.1002/bit.260390408.
6
On the distribution of glyoxalase and glutathione.
Biochem J. 1945;39(4):320-4. doi: 10.1042/bj0390320.
7
Reactions of methylglyoxal with nucleic acids.
FEBS Lett. 1973 Jan 1;29(1):51-54. doi: 10.1016/0014-5793(73)80013-4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验