Suppr超能文献

解析蛋白质中环移偏好并预测其生存能力。

Deciphering the preference and predicting the viability of circular permutations in proteins.

机构信息

Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan, People's Republic of China.

出版信息

PLoS One. 2012;7(2):e31791. doi: 10.1371/journal.pone.0031791. Epub 2012 Feb 16.

Abstract

Circular permutation (CP) refers to situations in which the termini of a protein are relocated to other positions in the structure. CP occurs naturally and has been artificially created to study protein function, stability and folding. Recently CP is increasingly applied to engineer enzyme structure and function, and to create bifunctional fusion proteins unachievable by tandem fusion. CP is a complicated and expensive technique. An intrinsic difficulty in its application lies in the fact that not every position in a protein is amenable for creating a viable permutant. To examine the preferences of CP and develop CP viability prediction methods, we carried out comprehensive analyses of the sequence, structural, and dynamical properties of known CP sites using a variety of statistics and simulation methods, such as the bootstrap aggregating, permutation test and molecular dynamics simulations. CP particularly favors Gly, Pro, Asp and Asn. Positions preferred by CP lie within coils, loops, turns, and at residues that are exposed to solvent, weakly hydrogen-bonded, environmentally unpacked, or flexible. Disfavored positions include Cys, bulky hydrophobic residues, and residues located within helices or near the protein's core. These results fostered the development of an effective viable CP site prediction system, which combined four machine learning methods, e.g., artificial neural networks, the support vector machine, a random forest, and a hierarchical feature integration procedure developed in this work. As assessed by using the hydrofolate reductase dataset as the independent evaluation dataset, this prediction system achieved an AUC of 0.9. Large-scale predictions have been performed for nine thousand representative protein structures; several new potential applications of CP were thus identified. Many unreported preferences of CP are revealed in this study. The developed system is the best CP viability prediction method currently available. This work will facilitate the application of CP in research and biotechnology.

摘要

环状排列(CP)是指蛋白质的末端重新定位到结构中的其他位置的情况。CP 自然发生,并已被人为创造出来研究蛋白质的功能、稳定性和折叠。最近,CP 越来越多地被应用于工程酶结构和功能,并创造串联融合无法实现的双功能融合蛋白。CP 是一种复杂且昂贵的技术。其应用的内在困难在于,蛋白质中的每个位置并不都适合创建可行的排列。为了研究 CP 的偏好并开发 CP 可行性预测方法,我们使用各种统计学和模拟方法,如自举聚合、排列检验和分子动力学模拟,对已知 CP 位点的序列、结构和动力学特性进行了全面分析。CP 特别偏爱甘氨酸、脯氨酸、天冬氨酸和天冬酰胺。CP 偏好的位置位于螺旋、环、转角和暴露在溶剂中的残基、弱氢键、环境未包装或柔性的残基。不受欢迎的位置包括半胱氨酸、大体积疏水性残基和位于螺旋内或靠近蛋白质核心的残基。这些结果促进了一种有效的可行 CP 位点预测系统的发展,该系统结合了四种机器学习方法,如人工神经网络、支持向量机、随机森林和本工作中开发的分层特征集成过程。通过使用水叶酸还原酶数据集作为独立评估数据集进行评估,该预测系统的 AUC 为 0.9。已经对 9000 个代表性蛋白质结构进行了大规模预测;因此确定了 CP 的几个新的潜在应用。本研究揭示了许多未报道的 CP 偏好。开发的系统是目前可用的最佳 CP 可行性预测方法。这项工作将促进 CP 在研究和生物技术中的应用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bc06/3281007/b1a1e99d6102/pone.0031791.g001.jpg

相似文献

1
Deciphering the preference and predicting the viability of circular permutations in proteins.
PLoS One. 2012;7(2):e31791. doi: 10.1371/journal.pone.0031791. Epub 2012 Feb 16.
2
CPred: a web server for predicting viable circular permutations in proteins.
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W232-7. doi: 10.1093/nar/gks529. Epub 2012 Jun 11.
3
Protein engineering using circular permutation - structure, function, stability, and applications.
FEBS J. 2024 Aug;291(16):3581-3596. doi: 10.1111/febs.17146. Epub 2024 Apr 27.
5
High-resolution structure prediction of a circular permutation loop.
Protein Sci. 2011 Nov;20(11):1929-34. doi: 10.1002/pro.725. Epub 2011 Sep 30.
6
CPDB: a database of circular permutation in proteins.
Nucleic Acids Res. 2009 Jan;37(Database issue):D328-32. doi: 10.1093/nar/gkn679. Epub 2008 Oct 8.
7
SeqCP: A sequence-based algorithm for searching circularly permuted proteins.
Comput Struct Biotechnol J. 2022 Nov 14;21:185-201. doi: 10.1016/j.csbj.2022.11.024. eCollection 2023.
10

引用本文的文献

1
The importance of the location of the N-terminus in successful protein folding in vivo and in vitro.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2321999121. doi: 10.1073/pnas.2321999121. Epub 2024 Aug 15.
2
Design of stable circular permutants of the GroEL chaperone apical domain.
Cell Commun Signal. 2024 Feb 1;22(1):90. doi: 10.1186/s12964-023-01426-4.
3
Conformational Variation in Enzyme Catalysis: A Structural Study on Catalytic Residues.
J Mol Biol. 2022 Apr 15;434(7):167517. doi: 10.1016/j.jmb.2022.167517. Epub 2022 Feb 28.
4
Discovering the Ultimate Limits of Protein Secondary Structure Prediction.
Biomolecules. 2021 Nov 3;11(11):1627. doi: 10.3390/biom11111627.
5
CirPred, the first structure modeling and linker design system for circularly permuted proteins.
BMC Bioinformatics. 2021 Oct 12;22(Suppl 10):494. doi: 10.1186/s12859-021-04403-1.
6
A secondary structure-based position-specific scoring matrix applied to the improvement in protein secondary structure prediction.
PLoS One. 2021 Jul 28;16(7):e0255076. doi: 10.1371/journal.pone.0255076. eCollection 2021.
7
The influence of dataset homology and a rigorous evaluation strategy on protein secondary structure prediction.
PLoS One. 2021 Jul 14;16(7):e0254555. doi: 10.1371/journal.pone.0254555. eCollection 2021.
8
A simple strategy to enhance the speed of protein secondary structure prediction without sacrificing accuracy.
PLoS One. 2020 Jun 30;15(6):e0235153. doi: 10.1371/journal.pone.0235153. eCollection 2020.
9
Tandem domain swapping: determinants of multidomain protein misfolding.
Curr Opin Struct Biol. 2019 Oct;58:97-104. doi: 10.1016/j.sbi.2019.05.012. Epub 2019 Jun 28.
10
The Structure of a Thermophilic Kinase Shapes Fitness upon Random Circular Permutation.
ACS Synth Biol. 2016 May 20;5(5):415-25. doi: 10.1021/acssynbio.5b00305. Epub 2016 Mar 25.

本文引用的文献

1
Circular permutation: a different way to engineer enzyme structure and function.
Trends Biotechnol. 2011 Jan;29(1):18-25. doi: 10.1016/j.tibtech.2010.10.004. Epub 2010 Nov 17.
2
GIS: a comprehensive source for protein structure similarities.
Nucleic Acids Res. 2010 Jul;38(Web Server issue):W46-52. doi: 10.1093/nar/gkq314. Epub 2010 May 11.
3
Determination of ensemble-average pairwise root mean-square deviation from experimental B-factors.
Biophys J. 2010 Mar 3;98(5):861-71. doi: 10.1016/j.bpj.2009.11.011.
4
The folding, stability and conformational dynamics of beta-barrel fluorescent proteins.
Chem Soc Rev. 2009 Oct;38(10):2951-65. doi: 10.1039/b908170b. Epub 2009 Sep 4.
5
Context-independent, temperature-dependent helical propensities for amino acid residues.
J Am Chem Soc. 2009 Sep 16;131(36):13107-16. doi: 10.1021/ja904271k.
6
In vivo and in vitro protein ligation by naturally occurring and engineered split DnaE inteins.
PLoS One. 2009;4(4):e5185. doi: 10.1371/journal.pone.0005185. Epub 2009 Apr 13.
7
On the relation between residue flexibility and local solvent accessibility in proteins.
Proteins. 2009 Aug 15;76(3):617-36. doi: 10.1002/prot.22375.
8
CPDB: a database of circular permutation in proteins.
Nucleic Acids Res. 2009 Jan;37(Database issue):D328-32. doi: 10.1093/nar/gkn679. Epub 2008 Oct 8.
9
Novel protein folds and their nonsequential structural analogs.
Protein Sci. 2008 Aug;17(8):1374-82. doi: 10.1110/ps.035469.108. Epub 2008 Jun 26.
10
Deriving protein dynamical properties from weighted protein contact number.
Proteins. 2008 Aug 15;72(3):929-35. doi: 10.1002/prot.21983.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验