Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720.
California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720.
Proc Natl Acad Sci U S A. 2024 Aug 20;121(34):e2321999121. doi: 10.1073/pnas.2321999121. Epub 2024 Aug 15.
Protein folding in the cell often begins during translation. Many proteins fold more efficiently cotranslationally than when refolding from a denatured state. Changing the vectorial synthesis of the polypeptide chain through circular permutation could impact functional, soluble protein expression and interactions with cellular proteostasis factors. Here, we measure the solubility and function of every possible circular permutant (CP) of HaloTag in cell lysate using a gel-based assay, and in living cells via FACS-seq. We find that 78% of HaloTag CPs retain protein function, though a subset of these proteins are also highly aggregation-prone. We examine the function of each CP in cells lacking the cotranslational chaperone trigger factor and the intracellular protease Lon and find no significant changes in function as a result of modifying the cellular proteostasis network. Finally, we biophysically characterize two topologically interesting CPs in vitro via circular dichroism and hydrogen-deuterium exchange coupled with mass spectrometry to reveal changes in global stability and folding kinetics with circular permutation. For CP33, we identify a change in the refolding intermediate as compared to wild-type (WT) HaloTag. Finally, we show that the strongest predictor of aggregation-prone expression in cells is the introduction of termini within the refolding intermediate. These results, in addition to our finding that termini insertion within the conformationally restrained core is most disruptive to protein function, indicate that successful folding of circular permutants may depend more on changes in folding pathway and termini insertion in flexible regions than on the availability of proteostasis factors.
细胞中的蛋白质折叠通常在翻译过程中开始。许多蛋白质在共翻译折叠时比从变性状态重折叠时更有效。通过环状排列改变多肽链的定向合成可能会影响功能性、可溶性蛋白质表达以及与细胞蛋白质稳态因子的相互作用。在这里,我们使用基于凝胶的测定法和通过 FACS-seq 在活细胞中测量了 HaloTag 的每个可能环状排列变体 (CP) 的可溶性和功能。我们发现 78%的 HaloTag CP 保留了蛋白质功能,尽管其中一些蛋白质也高度易于聚集。我们在缺乏共翻译伴侣触发因子和细胞内蛋白酶 Lon 的细胞中检查每个 CP 的功能,并且由于修饰细胞蛋白质稳态网络而没有发现功能显著变化。最后,我们通过圆二色性和氢氘交换与质谱联用在体外对两个拓扑有趣的 CP 进行了生物物理表征,以揭示环状排列对整体稳定性和折叠动力学的影响。对于 CP33,我们与野生型 (WT) HaloTag 相比,确定了折叠中间体的变化。最后,我们表明,细胞中易于聚集表达的最强预测因子是在折叠中间体中引入末端。这些结果,除了我们发现折叠受限核心内的末端插入对蛋白质功能最具破坏性之外,表明环状排列变体的成功折叠可能更多地取决于折叠途径的变化和灵活区域末端的插入,而不是蛋白质稳态因子的可用性。