Suppr超能文献

相互作用的布朗粒子在拥挤一维环境中的生存。

Survival of interacting Brownian particles in crowded one-dimensional environment.

机构信息

Department of Macromolecular Physics, Faculty of Mathematics and Physics, Charles University in Prague, V Holešovičkách 2, 180 00 Praha, Czech Republic.

出版信息

J Chem Phys. 2012 Feb 14;136(6):064114. doi: 10.1063/1.3684954.

Abstract

We investigate a diffusive motion of a system of interacting Brownian particles in quasi-one-dimensional micropores. In particular, we consider a semi-infinite 1D geometry with a partially absorbing boundary and the hard-core inter-particle interaction. Due to the absorbing boundary the number of particles in the pore gradually decreases. We present the exact analytical solution of the problem. Our procedure merely requires the knowledge of the corresponding single-particle problem. First, we calculate the simultaneous probability density of having still a definite number (N - k) of surviving particles at definite coordinates. Focusing on an arbitrary tagged particle, we derive the exact probability density of its coordinate. Second, we present a complete probabilistic description of the emerging escape process. The survival probabilities for the individual particles are calculated, the first and the second moments of the exit times are discussed. Generally speaking, although the original inter-particle interaction possesses a point-like character, it induces entropic repulsive forces which, e.g., push the leftmost (rightmost) particle towards (opposite) the absorbing boundary thereby accelerating (decelerating) its escape. More importantly, as compared to the reference problem for the non-interacting particles, the interaction changes the dynamical exponents which characterize the long-time asymptotic dynamics. Interesting new insights emerge after we interpret our model in terms of (a) diffusion of a single particle in a N-dimensional space, and (b) order statistics defined on a system of N-independent, identically distributed random variables.

摘要

我们研究了在准一维微管中相互作用的布朗粒子系统的扩散运动。具体而言,我们考虑了具有部分吸收边界和硬芯粒子相互作用的半无限一维几何形状。由于吸收边界,管内的粒子数逐渐减少。我们给出了该问题的精确解析解。我们的方法仅需要了解相应的单粒子问题。首先,我们计算了在特定坐标处仍然存在确定数量(N-k)存活粒子的同时概率密度。关注任意标记粒子,我们推导出其坐标的精确概率密度。其次,我们给出了逃逸过程的完整概率描述。计算了各个粒子的存活概率,讨论了逸出时间的第一和第二矩。一般来说,尽管原始的粒子间相互作用具有点状特征,但它会引起熵斥力,例如,将最左边(最右边)的粒子推向(远离)吸收边界,从而加速(减速)其逃逸。更重要的是,与非相互作用粒子的参考问题相比,相互作用改变了描述长时间渐近动力学的动力学指数。当我们根据(a)N 维空间中单个粒子的扩散和(b)N 个独立同分布随机变量系统上的顺序统计来解释我们的模型时,就会出现有趣的新见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验