Suppr超能文献

Size polymorphism of chicken major histocompatibility complex-encoded B-G molecules is due to length variation in the cytoplasmic heptad repeat region.

作者信息

Kaufman J, Salomonsen J, Skjødt K, Thorpe D

机构信息

Basel Institute for Immunology, Switzerland.

出版信息

Proc Natl Acad Sci U S A. 1990 Nov;87(21):8277-81. doi: 10.1073/pnas.87.21.8277.

Abstract

B-G antigens are cell-surface molecules encoded by a highly polymorphic multigene family located in the chicken major histocompatibility complex (MHC). Rabbit antisera to B-G molecules immunoprecipitate 3-6 bands from iodinated erythrocytes by sodium dodecyl sulfate (SDS) gels under reducing conditions. These are all B-G molecules because they all map to the B-G region of the chicken MHC in congenic and recombinant chickens, most are directly recognized by the antisera, most form disulfide-linked dimers, and none bear N-linked carbohydrate. Both apparent homodimers and heterodimers are found, which bear intrachain disulfide bonds. All 3-6 bands have different mobilities in SDS gels between different haplotypes, ranging from 30 to 55 kDa. This size polymorphism is not affected by glycosidase treatment or addition of protease inhibitors. Partial proteolysis of cell surface-iodinated B-G molecules generates extremely similar patterns of spots, both within and between haplotypes. These surface-iodinated peptides bear either interchain or intrachain disulfide bonds. Additional peptides are generated by proteolysis of B-G molecules iodinated after isolation. Thus, it appears that the extracellular regions of these molecules are very similar and that the length polymorphism is due to variations in the cytoplasmic regions. Inspection of the cDNA-derived protein sequence in this region shows many heptad repeats, which may allow variation in length by step deletion and alternative splicing. The repeats indicate an alpha-helical coiled-coil structure, which could form an interaction between subunits of the dimer or with the cytoskeleton or both.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dfc0/54938/6ccd0eb4f470/pnas01046-0101-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验