Suppr超能文献

在酿酒酵母母细胞与芽体的颈部存在与几丁质相连的大量β(1-3)葡聚糖,这表明其参与局部生长控制。

Presence of a large β(1-3)glucan linked to chitin at the Saccharomyces cerevisiae mother-bud neck suggests involvement in localized growth control.

作者信息

Cabib Enrico, Blanco Noelia, Arroyo Javier

机构信息

Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Department of Health and Human Services, Bethesda, Maryland, USA.

出版信息

Eukaryot Cell. 2012 Apr;11(4):388-400. doi: 10.1128/EC.05328-11. Epub 2012 Feb 24.

Abstract

Previous results suggested that the chitin ring present at the yeast mother-bud neck, which is linked specifically to the nonreducing ends of β(1-3)glucan, may help to suppress cell wall growth at the neck by competing with β(1-6)glucan and thereby with mannoproteins for their attachment to the same sites. Here we explored whether the linkage of chitin to β(1-3)glucan may also prevent the remodeling of this polysaccharide that would be necessary for cell wall growth. By a novel mild procedure, β(1-3)glucan was isolated from cell walls, solubilized by carboxymethylation, and fractionated by size exclusion chromatography, giving rise to a very high-molecular-weight peak and to highly polydisperse material. The latter material, soluble in alkali, may correspond to glucan being remodeled, whereas the large-size fraction would be the final cross-linked structural product. In fact, the β(1-3)glucan of buds, where growth occurs, is solubilized by alkali. A gas1 mutant with an expected defect in glucan elongation showed a large increase in the polydisperse fraction. By a procedure involving sodium hydroxide treatment, carboxymethylation, fractionation by affinity chromatography on wheat germ agglutinin-agarose, and fractionation by size chromatography on Sephacryl columns, it was shown that the β(1-3)glucan attached to chitin consists mostly of high-molecular-weight material. Therefore, it appears that linkage to chitin results in a polysaccharide that cannot be further remodeled and does not contribute to growth at the neck. In the course of these experiments, the new finding was made that part of the chitin forms a noncovalent complex with β(1-3)glucan.

摘要

先前的研究结果表明,酵母母细胞与芽体颈部存在的几丁质环,它与β(1-3)葡聚糖的非还原端特异性相连,可能通过与β(1-6)葡聚糖竞争,进而与甘露糖蛋白竞争它们在相同位点的附着,从而有助于抑制颈部细胞壁的生长。在此,我们探究了几丁质与β(1-3)葡聚糖的连接是否也会阻止这种多糖的重塑,而这种重塑对于细胞壁生长是必需的。通过一种新颖的温和方法,从细胞壁中分离出β(1-3)葡聚糖,经羧甲基化使其溶解,并通过尺寸排阻色谱法进行分级分离,得到一个非常高分子量的峰和高度多分散的物质。后一种物质可溶于碱,可能对应于正在重塑的葡聚糖,而大尺寸部分将是最终的交联结构产物。事实上,发生生长的芽体中的β(1-3)葡聚糖可被碱溶解。一个预期在葡聚糖延伸方面存在缺陷的gas1突变体,其多分散部分大幅增加。通过一种涉及氢氧化钠处理、羧甲基化、在麦胚凝集素 - 琼脂糖上进行亲和色谱分级分离以及在Sephacryl柱上进行尺寸色谱分级分离的方法,结果表明与几丁质相连的β(1-3)葡聚糖主要由高分子量物质组成。因此,似乎与几丁质的连接导致形成一种无法进一步重塑且对颈部生长无贡献的多糖。在这些实验过程中,有一个新发现,即部分几丁质与β(1-3)葡聚糖形成非共价复合物。

相似文献

6
Crosslinks in the cell wall of budding yeast control morphogenesis at the mother-bud neck.
J Cell Sci. 2012 Dec 1;125(Pt 23):5781-9. doi: 10.1242/jcs.110460. Epub 2012 Oct 17.
7
Synthase III-dependent chitin is bound to different acceptors depending on location on the cell wall of budding yeast.
J Biol Chem. 2005 Mar 11;280(10):9170-9. doi: 10.1074/jbc.M414005200. Epub 2005 Jan 6.
8
Architecture of the yeast cell wall. The linkage between chitin and beta(1-->3)-glucan.
J Biol Chem. 1995 Jan 20;270(3):1170-8. doi: 10.1074/jbc.270.3.1170.
10
Cell wall beta-(1,6)-glucan of Saccharomyces cerevisiae: structural characterization and in situ synthesis.
J Biol Chem. 2009 May 15;284(20):13401-13412. doi: 10.1074/jbc.M807667200. Epub 2009 Mar 11.

引用本文的文献

3
Caspofungin resistance in Candida albicans: genetic factors and synergistic compounds for combination therapies.
Braz J Microbiol. 2022 Sep;53(3):1101-1113. doi: 10.1007/s42770-022-00739-9. Epub 2022 Mar 29.
4
Discovering the Influence of Microorganisms on Wine Color.
Front Microbiol. 2021 Dec 3;12:790935. doi: 10.3389/fmicb.2021.790935. eCollection 2021.
6
Rapid screening method of Saccharomyces cerevisiae mutants using calcofluor white and aniline blue.
Braz J Microbiol. 2021 Sep;52(3):1077-1086. doi: 10.1007/s42770-021-00515-1. Epub 2021 May 4.
7
The Saccharomyces cerevisiae Ncw2 protein works on the chitin/β-glucan organisation of the cell wall.
Antonie Van Leeuwenhoek. 2021 Jul;114(7):1141-1153. doi: 10.1007/s10482-021-01584-w. Epub 2021 May 4.
8
Low Temperature Dissolution of Yeast Chitin-Glucan Complex and Characterization of the Regenerated Polymer.
Bioengineering (Basel). 2020 Mar 14;7(1):28. doi: 10.3390/bioengineering7010028.
9
Length Specificity and Polymerization Mechanism of (1,3)-β-d-Glucan Synthase in Fungal Cell Wall Biosynthesis.
Biochemistry. 2020 Feb 11;59(5):682-693. doi: 10.1021/acs.biochem.9b00896. Epub 2020 Jan 15.
10
The Glucan-Remodeling Enzyme Phr1p and the Chitin Synthase Chs1p Cooperate to Maintain Proper Nuclear Segregation and Cell Integrity in .
Front Cell Infect Microbiol. 2019 Nov 22;9:400. doi: 10.3389/fcimb.2019.00400. eCollection 2019.

本文引用的文献

3
Septins and the lateral compartmentalization of eukaryotic membranes.
Dev Cell. 2009 Apr;16(4):493-506. doi: 10.1016/j.devcel.2009.04.003.
5
Cell wall assembly in Saccharomyces cerevisiae.
Microbiol Mol Biol Rev. 2006 Jun;70(2):317-43. doi: 10.1128/MMBR.00038-05.
6
Cell wall construction in Saccharomyces cerevisiae.
Yeast. 2006 Feb;23(3):185-202. doi: 10.1002/yea.1349.
7
Synthase III-dependent chitin is bound to different acceptors depending on location on the cell wall of budding yeast.
J Biol Chem. 2005 Mar 11;280(10):9170-9. doi: 10.1074/jbc.M414005200. Epub 2005 Jan 6.
9
Septins, under Cla4p regulation, and the chitin ring are required for neck integrity in budding yeast.
Mol Biol Cell. 2003 May;14(5):2128-41. doi: 10.1091/mbc.e02-08-0547. Epub 2003 Feb 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验