Suppr超能文献

利用钙荧光白和苯胺蓝快速筛选酿酒酵母突变体的方法。

Rapid screening method of Saccharomyces cerevisiae mutants using calcofluor white and aniline blue.

机构信息

Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia.

The University of Sydney Institute of Agriculture, 1 Central Avenue, Australian Technology Park, Eveleigh, NSW, 2015, Australia.

出版信息

Braz J Microbiol. 2021 Sep;52(3):1077-1086. doi: 10.1007/s42770-021-00515-1. Epub 2021 May 4.

Abstract

Fungal cell walls are composed of polysaccharide scaffold that changes in response to environment. The structure and biosynthesis of the wall are unique to fungi, with plant and mammalian immune systems evolved to recognize wall components. Additionally, the enzymes that assemble fungal cell wall components are excellent targets for antifungal chemotherapies and fungicides. Understanding changes in the cell wall are important for fundamental understanding of cell wall dynamics and for drug development. Here we describe a screening technique to monitor the gross morphological changes of two key cell wall polysaccharides of chitin and β-1,3-glucan combined with polymerase chain reaction (PCR) genotyping. Changes in chitin and β-1,3-glucan were detected microscopically by using the dyes calcofluor white and aniline blue. Combining PCR and fluorescence microscopy, as a quick and easy screening technique, confirmed both the phenotype and genotype of the wild-type, h chitin synthase mutants (chs1Δ and chs3Δ) and one β-1,3-glucan synthase mutant fks2Δ from Saccharomyces cerevisiae knockout library. This combined screening method highlighted that the fks1Δ strain obtained commercially was in fact not FKS1 deletion strain, and instead had both wild-type genotype and phenotype. A new β-1,3-glucan synthase knockout fks1::URA3 strain was created. Fluorescence microscopy confirmed its phenotype revealing that the chitin and the new β-1,3-glucan profiles were elevated in the mother cells and in the emerging buds respectively in the fks1Δ cell walls. This combination of PCR with fluorescence microscopy is a quick and easy screening method to determine and verify morphological changes in the S. cerevisiae cell wall.

摘要

真菌细胞壁由多糖支架组成,会随环境变化而改变。细胞壁的结构和生物合成是真菌所特有的,植物和哺乳动物的免疫系统已经进化到可以识别细胞壁成分。此外,组装真菌细胞壁成分的酶是抗真菌化学疗法和杀真菌剂的极好靶点。了解细胞壁的变化对于深入了解细胞壁动力学和药物开发都很重要。在这里,我们描述了一种结合聚合酶链反应(PCR)基因分型的筛选技术,用于监测几丁质和β-1,3-葡聚糖这两种关键细胞壁多糖的宏观形态变化。通过使用Calcofluor White 和苯胺蓝这两种染料,在显微镜下检测几丁质和β-1,3-葡聚糖的变化。将 PCR 和荧光显微镜相结合,作为一种快速简便的筛选技术,证实了野生型、chs1Δ 和 chs3Δ 几丁质合酶突变体以及 Saccharomyces cerevisiae 敲除文库中的一个β-1,3-葡聚糖合酶突变体 fks2Δ 的表型和基因型。这种联合筛选方法突出表明,从商业途径获得的 fks1Δ 菌株实际上并不是 FKS1 缺失菌株,而是具有野生型基因型和表型。创建了一个新的β-1,3-葡聚糖合酶缺失 fks1::URA3 菌株。荧光显微镜证实了其表型,表明在 fks1Δ 细胞壁中,母细胞和新生芽分别升高了几丁质和新的β-1,3-葡聚糖图谱。这种将 PCR 与荧光显微镜相结合的方法是一种快速简便的筛选方法,可以确定和验证 S. cerevisiae 细胞壁的形态变化。

相似文献

本文引用的文献

1
Fungal Cell Wall: Emerging Antifungals and Drug Resistance.真菌细胞壁:新型抗真菌药物与耐药性
Front Microbiol. 2019 Nov 21;10:2573. doi: 10.3389/fmicb.2019.02573. eCollection 2019.
10
Fungal echinocandin resistance.真菌棘白菌素耐药性。
Fungal Genet Biol. 2010 Feb;47(2):117-26. doi: 10.1016/j.fgb.2009.09.003. Epub 2009 Sep 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验