Suppr超能文献

拟南芥己糖激酶样 1 和己糖激酶 1 形成了一个调节植物葡萄糖和乙烯反应的关键节点。

Arabidopsis Hexokinase-Like1 and Hexokinase1 form a critical node in mediating plant glucose and ethylene responses.

机构信息

BioSciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA.

出版信息

Plant Physiol. 2012 Apr;158(4):1965-75. doi: 10.1104/pp.112.195636. Epub 2012 Feb 24.

Abstract

Arabidopsis (Arabidopsis thaliana) Hexokinase-Like1 (HKL1) lacks glucose (Glc) phosphorylation activity and has been shown to act as a negative regulator of plant growth. Interestingly, the protein has a largely conserved Glc-binding domain, and protein overexpression was shown previously to promote seedling tolerance to exogenous 6% (w/v) Glc. Since these phenotypes occur independently of cellular Glc signaling activities, we have tested whether HKL1 might promote cross talk between the normal antagonists Glc and ethylene. We show that repression by 1-aminocyclopropane-1-carboxylic acid (ACC) of the Glc-dependent developmental arrest of wild-type Arabidopsis seedlings requires the HKL1 protein. We also describe an unusual root hair phenotype associated with growth on high Glc medium that occurs prominently in HKL1 overexpression lines and in glucose insensitive 2-1 (gin2-1), a null mutant of Hexokinase1 (HXK1). Seedlings of these lines produce bulbous root hairs with an enlarged base after transfer from agar plates with normal medium to plates with 6% Glc. Seedling transfer to plates with 2% Glc plus ACC mimics the high-Glc effect in the HKL1 overexpression line but not in gin2-1. A similar ACC-stimulated, bulbous root hair phenotype also was observed in wild-type seedlings transferred to plates with 9% Glc. From transcript expression analyses, we found that HKL1 and HXK1 have differential roles in Glc-dependent repression of some ethylene biosynthesis genes. Since we show by coimmunoprecipitation assays that HKL1 and HXK1 can interact, these two proteins likely form a critical node in Glc signaling that mediates overlapping, but also distinct, cellular responses to Glc and ethylene treatments.

摘要

拟南芥(Arabidopsis thaliana)己糖激酶样 1(HKL1)缺乏葡萄糖(Glc)磷酸化活性,被证明是植物生长的负调节剂。有趣的是,该蛋白具有一个广泛保守的 Glc 结合结构域,先前的蛋白质过表达研究表明,它可以促进幼苗对外源 6%(w/v)Glc 的耐受性。由于这些表型独立于细胞 Glc 信号活性,我们测试了 HKL1 是否可以促进 Glc 和乙烯之间的正常拮抗物之间的串扰。我们表明,1-氨基环丙烷-1-羧酸(ACC)对野生型拟南芥幼苗中 Glc 依赖性发育阻滞的抑制作用需要 HKL1 蛋白。我们还描述了一种与高 Glc 培养基上生长相关的不寻常根毛表型,该表型在 HKL1 过表达系和葡萄糖不敏感 2-1(gin2-1)(Hexokinase1(HXK1)的一个无效突变体)中尤为明显。这些系的幼苗在从含有正常培养基的琼脂平板转移到含有 6%Glc 的平板后,会产生具有增大基部的球状根毛。将幼苗转移到含有 2%Glc 和 ACC 的平板上可模拟 HKL1 过表达系中的高 Glc 效应,但不能模拟 gin2-1 中的效应。在转移到含有 9%Glc 的平板上的野生型幼苗中,也观察到类似的 ACC 刺激的球状根毛表型。从转录表达分析中,我们发现 HKL1 和 HXK1 在 Glc 依赖性抑制某些乙烯生物合成基因方面具有不同的作用。由于我们通过共免疫沉淀实验表明 HKL1 和 HXK1 可以相互作用,这两种蛋白可能形成 Glc 信号转导中的一个关键节点,介导对 Glc 和乙烯处理的重叠但又不同的细胞反应。

相似文献

1
Arabidopsis Hexokinase-Like1 and Hexokinase1 form a critical node in mediating plant glucose and ethylene responses.
Plant Physiol. 2012 Apr;158(4):1965-75. doi: 10.1104/pp.112.195636. Epub 2012 Feb 24.
2
Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth.
J Exp Bot. 2009;60(14):4137-49. doi: 10.1093/jxb/erp252. Epub 2009 Aug 25.
3
Ethylene modulates flavonoid accumulation and gravitropic responses in roots of Arabidopsis.
Plant Physiol. 2006 Apr;140(4):1384-96. doi: 10.1104/pp.105.075671. Epub 2006 Feb 17.
5
Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling.
Science. 2003 Apr 11;300(5617):332-6. doi: 10.1126/science.1080585.
6
Interaction between glucose and brassinosteroid during the regulation of lateral root development in Arabidopsis.
Plant Physiol. 2015 May;168(1):307-20. doi: 10.1104/pp.114.256313. Epub 2015 Mar 25.
7
Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks.
Plant Physiol. 2011 May;156(1):144-64. doi: 10.1104/pp.111.172502. Epub 2011 Mar 22.
8
COI1, a jasmonate receptor, is involved in ethylene-induced inhibition of Arabidopsis root growth in the light.
J Exp Bot. 2010 Oct;61(15):4373-86. doi: 10.1093/jxb/erq240. Epub 2010 Aug 10.

引用本文的文献

1
Signalling and regulation of plant development by carbon/nitrogen balance.
Physiol Plant. 2025 Mar-Apr;177(2):e70228. doi: 10.1111/ppl.70228.
5
Comparative transcriptome analysis reveals key pathways and regulatory networks in early resistance of to soybean mosaic virus.
Front Microbiol. 2023 Oct 19;14:1241076. doi: 10.3389/fmicb.2023.1241076. eCollection 2023.
6
Sugar status in preexisting leaves determines systemic stomatal development within newly developing leaves.
Proc Natl Acad Sci U S A. 2023 Jun 13;120(24):e2302854120. doi: 10.1073/pnas.2302854120. Epub 2023 Jun 5.
7
Ubiquitin E3 ligase AtCHYR2 functions in glucose regulation of germination and post-germinative growth in Arabidopsis thaliana.
Plant Cell Rep. 2023 Jun;42(6):989-1002. doi: 10.1007/s00299-023-03008-7. Epub 2023 Mar 29.
8
Heat stress response in Chinese cabbage ( L.) revealed by transcriptome and physiological analysis.
PeerJ. 2022 May 25;10:e13427. doi: 10.7717/peerj.13427. eCollection 2022.
9
Label-free quantitative proteomics to investigate the response of strawberry fruit after controlled ozone treatment.
RSC Adv. 2019 Jan 3;9(2):676-689. doi: 10.1039/c8ra08405j. eCollection 2019 Jan 2.

本文引用的文献

1
SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response.
Plant Physiol. 2010 Apr;152(4):1889-900. doi: 10.1104/pp.109.150573. Epub 2010 Feb 10.
2
Evolutionary lineages and functional diversification of plant hexokinases.
Mol Plant. 2010 Mar;3(2):334-46. doi: 10.1093/mp/ssq003. Epub 2010 Feb 9.
4
Function of Arabidopsis hexokinase-like1 as a negative regulator of plant growth.
J Exp Bot. 2009;60(14):4137-49. doi: 10.1093/jxb/erp252. Epub 2009 Aug 25.
6
Evolutionary diversification of plant shikimate kinase gene duplicates.
PLoS Genet. 2008 Dec;4(12):e1000292. doi: 10.1371/journal.pgen.1000292. Epub 2008 Dec 5.
8
Expression and evolutionary features of the hexokinase gene family in Arabidopsis.
Planta. 2008 Aug;228(3):411-25. doi: 10.1007/s00425-008-0746-9. Epub 2008 May 15.
9
Ethylene regulates lateral root formation and auxin transport in Arabidopsis thaliana.
Plant J. 2008 Jul;55(2):175-87. doi: 10.1111/j.1365-313X.2008.03495.x. Epub 2008 Mar 19.
10
Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis.
Plant Mol Biol. 2008 May;67(1-2):151-67. doi: 10.1007/s11103-008-9308-6. Epub 2008 Feb 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验