Martini Johannes W R, Ullmann G Matthias
Institut für Mathematische Stochastik, Georg-August Universität Göttingen, Göttingen, Germany.
J Math Biol. 2013 Feb;66(3):477-503. doi: 10.1007/s00285-012-0517-x. Epub 2012 Feb 25.
The decoupled sites representation (DSR) is a theoretical instrument which allows to regard complex pH titration curves of biomolecules with several interacting proton binding sites as composition of isolated, non-interacting sites, each with a standard Henderson-Hasselbalch titration curve. In this work, we present the mathematical framework in which the DSR is embedded and give mathematical proofs for several statements in the periphery of the DSR. These proofs also identify exceptions. To apply the DSR to any molecule, it is necessary to extend the set of binding energies from R to a stripe within C. An important observation in this context is that even positive interaction energies (repulsion) between the binding sites will not guarantee real binding energies in the decoupled system, at least if the molecule has more than four proton binding sites. Moreover, we show that for a given overall titration curve it is not only possible to find a corresponding system with an interaction energy of zero but with any arbitrary fix interaction energy. This result also effects practical work as it shows that for any given titration curve, there is an infinite number of corresponding hypothetical molecules. Furthermore, this implies that--using a common definition of cooperative binding on the level of interaction energies--a meaningful measure of cooperativity between the binding sites cannot be defined solely on the basis of the overall titration. Consequently, all measures of cooperativity based on the overall binding curve do not measure the type of cooperativity commonly defined on the basis of interaction energies. Understanding the DSR mathematically provides the basis of transferring the DSR to biomolecules with different types of interacting ligands, such as protons and electrons, which play an important role within electron transport chains like in photosynthesis.
解耦位点表示法(DSR)是一种理论工具,它能将具有多个相互作用质子结合位点的生物分子的复杂pH滴定曲线视为由孤立的、非相互作用位点组成,每个位点都有标准的亨德森 - 哈塞尔巴尔赫滴定曲线。在这项工作中,我们提出了DSR所嵌入的数学框架,并对DSR周边的几个陈述给出了数学证明。这些证明也识别出了例外情况。要将DSR应用于任何分子,有必要将结合能的集合从实数集扩展到复数集内的一个条带。在这种情况下的一个重要观察结果是,即使结合位点之间存在正相互作用能(排斥),也不能保证解耦系统中的实际结合能,至少如果分子有超过四个质子结合位点时是这样。此外,我们表明,对于给定的整体滴定曲线,不仅有可能找到一个相互作用能为零的相应系统,而且可以找到具有任何任意固定相互作用能的系统。这个结果也影响实际工作,因为它表明对于任何给定的滴定曲线,都有无数个相应的假设分子。此外,这意味着——使用相互作用能层面上协同结合的常见定义——结合位点之间协同性的有意义度量不能仅基于整体滴定来定义。因此,基于整体结合曲线的所有协同性度量都不能测量基于相互作用能通常定义的协同性类型。从数学上理解DSR为将DSR转移到具有不同类型相互作用配体(如质子和电子)的生物分子提供了基础,这些配体在光合作用等电子传输链中起着重要作用。