Suppr超能文献

标准态自由能而非pK值,是描述小分子质子化和互变异构状态的理想选择。

Standard state free energies, not pKs, are ideal for describing small molecule protonation and tautomeric states.

作者信息

Gunner M R, Murakami Taichi, Rustenburg Ariën S, Işık Mehtap, Chodera John D

机构信息

Department of Physics City College of New York, New York, NY, 10031, USA.

Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA.

出版信息

J Comput Aided Mol Des. 2020 May;34(5):561-573. doi: 10.1007/s10822-020-00280-7. Epub 2020 Feb 12.

Abstract

The pK is the standard measure used to describe the aqueous proton affinity of a compound, indicating the proton concentration (pH) at which two protonation states (e.g. A and AH) have equal free energy. However, compounds can have additional protonation states (e.g. AH), and may assume multiple tautomeric forms, with the protons in different positions (microstates). Macroscopic pKs give the pH where the molecule changes its total number of protons, while microscopic pKs identify the tautomeric states involved. As tautomers have the same number of protons, the free energy difference between them and their relative probability is pH independent so there is no pK connecting them. The question arises: What is the best way to describe protonation equilibria of a complex molecule in any pH range? Knowing the number of protons and the relative free energy of all microstates at a single pH, ∆G°, provides all the information needed to determine the free energy, and thus the probability of each microstate at each pH. Microstate probabilities as a function of pH generate titration curves that highlight the low energy, observable microstates, which can then be compared with experiment. A network description connecting microstates as nodes makes it straightforward to test thermodynamic consistency of microstate free energies. The utility of this analysis is illustrated by a description of one molecule from the SAMPL6 Blind pK Prediction Challenge. Analysis of microstate ∆G°s also makes a more compact way to archive and compare the pH dependent behavior of compounds with multiple protonatable sites.

摘要

pK是用于描述化合物水性质子亲和力的标准度量,它表示两种质子化状态(例如A和AH)具有相等自由能时的质子浓度(pH)。然而,化合物可能有额外的质子化状态(例如AH),并且可能呈现多种互变异构形式,质子处于不同位置(微观状态)。宏观pK给出分子改变其质子总数时的pH,而微观pK则确定所涉及的互变异构状态。由于互变异构体具有相同数量的质子,它们之间的自由能差及其相对概率与pH无关,因此不存在连接它们的pK。问题来了:在任何pH范围内描述复杂分子质子化平衡的最佳方法是什么?知道单个pH下所有微观状态的质子数和相对自由能∆G°,就能提供确定自由能所需的所有信息,进而确定每个pH下每个微观状态的概率。作为pH函数的微观状态概率会生成滴定曲线,突出显示低能量、可观测的微观状态,然后可将其与实验进行比较。将微观状态作为节点连接起来的网络描述使得检验微观状态自由能的热力学一致性变得直接明了。通过对SAMPL6盲pK预测挑战赛中一个分子的描述来说明这种分析的实用性。对微观状态∆G°的分析还提供了一种更紧凑的方式来存档和比较具有多个可质子化位点的化合物的pH依赖性行为。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fa7a/7556740/cb6733ca1108/nihms-1629399-f0001.jpg

相似文献

5
Characterizing Protein Protonation Microstates Using Monte Carlo Sampling.使用蒙特卡罗采样表征蛋白质质子化微状态
J Phys Chem B. 2022 Apr 7;126(13):2476-2485. doi: 10.1021/acs.jpcb.2c00139. Epub 2022 Mar 28.

引用本文的文献

1
Bridging Machine Learning and Thermodynamics for Accurate p Prediction.将机器学习与热力学相结合以实现准确的p预测
JACS Au. 2024 Jul 17;4(9):3451-3465. doi: 10.1021/jacsau.4c00271. eCollection 2024 Sep 23.
10
Evaluation of log P, pK, and log D predictions from the SAMPL7 blind challenge.SAMPL7 盲测中预测 log P、pK 和 log D 的评估。
J Comput Aided Mol Des. 2021 Jul;35(7):771-802. doi: 10.1007/s10822-021-00397-3. Epub 2021 Jun 24.

本文引用的文献

6
Reservoir pH replica exchange.水库 pH 值复制交换。
J Chem Phys. 2018 Aug 21;149(7):072321. doi: 10.1063/1.5027413.
9
The SAMPL6 challenge on predicting aqueous pK values from EC-RISM theory.SAMPL6 挑战赛:从 EC-RISM 理论预测水相 pk 值。
J Comput Aided Mol Des. 2018 Oct;32(10):1151-1163. doi: 10.1007/s10822-018-0140-z. Epub 2018 Aug 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验