Ammar Ismahen, Izsvák Zsuzsanna, Ivics Zoltán
Max Delbruck Center for Molecular Medicine, Berlin, Germany.
Methods Mol Biol. 2012;859:229-40. doi: 10.1007/978-1-61779-603-6_13.
The mobility of class II transposable elements (DNA transposons) can be experimentally controlled by separating the two functional components of the transposon: the terminal inverted repeat sequences that flank a gene of interest to be mobilized and the transposase protein that can be conditionally supplied to drive the transposition reaction. Thus, a DNA molecule of interest (e.g., a fluorescent marker, an shRNA expression cassette, a mutagenic gene trap or a therapeutic gene construct) cloned between the inverted repeat sequences of a transposon-based vector can be stably integrated into the genome in a regulated and highly efficient manner. Sleeping Beauty (SB) was the first transposon ever shown capable of gene transfer in vertebrate cells, and recent results confirm that SB supports a full spectrum of genetic engineering in vertebrate species, including transgenesis, insertional mutagenesis, and therapeutic somatic gene, transfer both ex vivo and in vivo. This methodological paradigm opened up a number of avenues for genome manipulations for basic and applied research. This review highlights the state-of-the-art in SB transposon technology in diverse genetic applications with special emphasis on the transposon as well as transposase vectors currently available in the SB transposon toolbox.
II类转座元件(DNA转座子)的移动性可通过将转座子的两个功能组件分离来进行实验控制:位于待移动的目标基因两侧的末端反向重复序列,以及可通过条件性供应来驱动转座反应的转座酶蛋白。因此,克隆在基于转座子的载体的反向重复序列之间的目标DNA分子(例如荧光标记、短发夹RNA表达盒、诱变基因捕获或治疗性基因构建体)能够以可控且高效的方式稳定整合到基因组中。“睡美人”(SB)是首个被证明能够在脊椎动物细胞中进行基因转移的转座子,最近的研究结果证实,SB支持脊椎动物物种中的全谱系基因工程,包括转基因、插入诱变以及离体和体内的治疗性体细胞基因转移。这种方法学范例为基础研究和应用研究中的基因组操作开辟了许多途径。本综述重点介绍了SB转座子技术在各种基因应用中的最新进展,特别强调了SB转座子工具箱中目前可用的转座子以及转座酶载体。