Januar Hedi I, Dewi Ariyanti S, Marraskuranto Endar, Wikanta Thamrin
Indonesian Research Center for Marine and Fisheries Products Processing and Biotechnology, Jl. KS Tubun Petamburan VI, Slipi - Jakarta Pusat, Indonesia.
J Pharm Bioallied Sci. 2012 Jan;4(1):56-9. doi: 10.4103/0975-7406.92733.
Fucoxanthin is a potential tumor cytotoxic compound. However, mechanisms underlying the activities are unclear.
This in silico study aimed to predict the main mechanism of fucoxanthin; whether with its binding to p53 gene, CDK2, or tubulin.
In silico was studied by using Autodock-Vina's algorithms. The mechanisms being analyzed by comparison of fucoxanthin and native ligands binding energies in p53 gene (1RV1), CDK2 (1AQ1), and three binding sites of tubulin (1JFF-paclitaxel, 1SA0-colchicine, and 1Z2B-vinblastine site).
Autodock-Vina's algorithms were valid, as re-docking the native ligands to their receptors showed a RSMD value less than 2 A with binding energies of -11.5 (1RV1), -14.4 (1AQ1), -15.4 (1JFF), -9.2 (1SA0), and -9.7 (1Z2B) kcal/mol. Docking of fucoxanthin to subjected receptors were -6.2 (1RV1), -9.3 (1AQ1), -8.1 (1JFF), -9.2 (1SA0), and -7.2 (1Z2B) kcal/mol. Virtual analysis of fucoxanthin and tubulin binding structure showed the carboxyl moiety in fucoxanthin make a hydrogen bound with 355Val (2.61 A) and 354Ala (2.79 A) at tubulin.
The results showed that binding energy of fucoxanthin could only reach the same level as with colchicine ligand in tubulin. Therefore, it may predict that the most probable fucoxanthin main mechanism is to bind tubulin, which causes microtubules depolimerization and cell cycle arrest.
岩藻黄质是一种潜在的肿瘤细胞毒性化合物。然而,其作用机制尚不清楚。
本计算机模拟研究旨在预测岩藻黄质的主要作用机制;即它是否与p53基因、细胞周期蛋白依赖性激酶2(CDK2)或微管蛋白结合。
采用Autodock-Vina算法进行计算机模拟研究。通过比较岩藻黄质与p53基因(1RV1)、CDK2(1AQ1)以及微管蛋白的三个结合位点(1JFF - 紫杉醇、1SA0 - 秋水仙碱和1Z2B - 长春碱位点)上天然配体的结合能来分析作用机制。
Autodock-Vina算法有效,因为将天然配体重新对接至其受体时,均方根偏差(RSMD)值小于2 Å,结合能分别为-11.5(1RV1)、-14.4(1AQ1)、-15.4(1JFF)、-9.2(1SA0)和-9.7(1Z2B)kcal/mol。岩藻黄质与受试受体的对接结合能分别为-6.2(1RV1)、-9.3(1AQ1)、-8.1(1JFF)、-9.2(1SA0)和-7.2(1Z2B)kcal/mol。岩藻黄质与微管蛋白结合结构的虚拟分析表明,岩藻黄质中的羧基部分与微管蛋白上的355缬氨酸(2.61 Å)和354丙氨酸(2.79 Å)形成氢键。
结果表明,岩藻黄质的结合能仅能达到与微管蛋白中秋水仙碱配体相同的水平。因此,可以预测岩藻黄质最可能的主要作用机制是与微管蛋白结合,从而导致微管解聚和细胞周期停滞。