Technische Universität Dortmund, Fakultät Chemie, D-44221 Dortmund, Germany.
Colloids Surf B Biointerfaces. 2012 Jun 1;94:80-8. doi: 10.1016/j.colsurfb.2012.01.050. Epub 2012 Feb 10.
Ultrathin films are useful for coating materials and controlling drug delivery processes. Here, we explore the use of polyelectrolyte multilayers as templates for the formation of two-dimensional protein networks, which represent biocompatible and biodegradable ultrathin films. In a first step, we have studied the lateral aggregation and amyloid fibril formation of bovine insulin that is adsorbed at and confined within planar polyelectrolyte multilayers, assembled with poly(diallyldimethylammonium chloride) (PDDA), poly(styrenesulfonic acid) (PSS), and hyaluronic acid (HA). Si-PDDA-PSS-(insulin-PSS)(x) and Si-PDDA-PSS-(insulin-HA)(x) multilayers (x=1-4) have been prepared and characterized in the fully hydrated state by using X-ray reflectometry, attenuated total reflection-Fourier transform infrared spectroscopy and confocal fluorescence microscopy. The obtained data demonstrate a successful build-up of the insulin-polyelectrolyte multilayers on silicon wafers that grow strongly in thickness upon insulin adsorption on PSS and HA layers. The secondary structure analysis of insulin, based on the vibrational amide I'-band, indicates an enhanced intermolecular β-sheet formation within the multilayers at 70°C and pD=2, i.e. at conditions that promote insulin amyloid fibrils rich in β-sheet contents. However, insulin that is confined between two polyelectrolyte layers rather forms amorphous aggregates as can be inferred from confocal fluorescence images. Remarkably, when insulin is deposited as the top-layer, a partial conversion into a two-dimensional fibrillar network can be induced by adding amyloid seeds to the solution. Thus, the results of this study illustrate the capability of polyelectrolyte multilayers as templates for the growth of protein networks.
超薄膜在材料涂层和控制药物输送过程中非常有用。在这里,我们探索了聚电解质多层作为二维蛋白质网络形成的模板的用途,这些蛋白质网络代表了生物相容和可生物降解的超薄膜。在第一步中,我们研究了在平面聚电解质多层中吸附和限制的牛胰岛素的横向聚集和淀粉样纤维形成,这些多层是由聚二烯丙基二甲基氯化铵(PDDA)、聚苯乙烯磺酸(PSS)和透明质酸(HA)组装而成的。Si-PDDA-PSS-(胰岛素-PSS)(x)和 Si-PDDA-PSS-(胰岛素-HA)(x)多层(x=1-4)已被制备并在完全水合状态下通过 X 射线反射谱、衰减全反射傅里叶变换红外光谱和共聚焦荧光显微镜进行了表征。获得的数据表明,胰岛素-聚电解质多层在硅晶片上的成功构建,并且在 PSS 和 HA 层上吸附胰岛素后,其厚度会强烈增加。基于振动酰胺 I'-带的胰岛素二级结构分析表明,在 70°C 和 pD=2 的条件下,即在促进富含β-折叠含量的胰岛素淀粉样纤维形成的条件下,多层内的分子间β-折叠形成增强。然而,在聚电解质层之间限制的胰岛素形成无定形聚集体,这可以从共聚焦荧光图像推断出来。值得注意的是,当胰岛素作为顶层沉积时,通过向溶液中添加淀粉样纤维种子,可以诱导其部分转化为二维纤维状网络。因此,这项研究的结果说明了聚电解质多层作为蛋白质网络生长模板的能力。