Suppr超能文献

氨基糖苷 2''-磷酸转移酶 IVa 双重核苷酸选择性的结构基础为氨基糖苷激酶核苷酸特异性决定因素提供了新的见解。

Structural basis for dual nucleotide selectivity of aminoglycoside 2''-phosphotransferase IVa provides insight on determinants of nucleotide specificity of aminoglycoside kinases.

机构信息

Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec H3G 0B1, Canada.

出版信息

J Biol Chem. 2012 Apr 13;287(16):13094-102. doi: 10.1074/jbc.M112.349670. Epub 2012 Feb 24.

Abstract

Enzymatic phosphorylation through a family of enzymes called aminoglycoside O-phosphotransferases (APHs) is a major mechanism by which bacteria confer resistance to aminoglycoside antibiotics. Members of the APH(2″) subfamily are of particular clinical interest because of their prevalence in pathogenic strains and their broad substrate spectra. APH(2″) enzymes display differential preferences between ATP or GTP as the phosphate donor, with aminoglycoside 2″-phosphotransferase IVa (APH(2″)-IVa) being a member that utilizes both nucleotides at comparable efficiencies. We report here four crystal structures of APH(2″)-IVa, two of the wild type enzyme and two of single amino acid mutants, each in complex with either adenosine or guanosine. Together, these structures afford a detailed look at the nucleoside-binding site architecture for this enzyme and reveal key elements that confer dual nucleotide specificity, including a solvent network in the interior of the nucleoside-binding pocket and the conformation of an interdomain linker loop. Steady state kinetic studies, as well as sequence and structural comparisons with members of the APH(2″) subfamily and other aminoglycoside kinases, rationalize the different substrate preferences for these enzymes. Finally, despite poor overall sequence similarity and structural homology, analysis of the nucleoside-binding pocket of APH(2″)-IVa shows a striking resemblance to that of eukaryotic casein kinase 2 (CK2), which also exhibits dual nucleotide specificity. These results, in complement with the multitude of existing inhibitors against CK2, can serve as a structural basis for the design of nucleotide-competitive inhibitors against clinically relevant APH enzymes.

摘要

通过一类被称为氨基糖苷 O-磷酸转移酶(APHs)的酶进行酶促磷酸化是细菌对抗氨基糖苷类抗生素产生抗性的主要机制。APH(2″)亚家族的成员由于在致病菌株中的普遍性及其广泛的底物谱而具有特殊的临床意义。APH(2″)酶对 ATP 或 GTP 作为磷酸供体显示出不同的偏好,其中氨基糖苷 2″-磷酸转移酶 IVa(APH(2″)-IVa)是一种能够以相当的效率利用这两种核苷酸的成员。我们在此报告了 APH(2″)-IVa 的四个晶体结构,其中两个是野生型酶,两个是单个氨基酸突变体,每个都与腺苷或鸟苷复合物。这些结构共同提供了对该酶核苷结合位点结构的详细了解,并揭示了赋予双重核苷酸特异性的关键元素,包括核苷结合口袋内部的溶剂网络和结构域间连接环的构象。稳态动力学研究,以及与 APH(2″)亚家族和其他氨基糖苷激酶成员的序列和结构比较,合理地解释了这些酶对不同底物的偏好。最后,尽管整体序列相似性和结构同源性较差,但对 APH(2″)-IVa 的核苷结合口袋的分析显示出与真核酪蛋白激酶 2(CK2)惊人的相似性,CK2 也表现出双重核苷酸特异性。这些结果,再加上针对 CK2 的大量现有抑制剂,可作为针对临床相关 APH 酶的核苷酸竞争性抑制剂设计的结构基础。

相似文献

4
Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2''-IVa.
Protein Sci. 2010 Aug;19(8):1565-76. doi: 10.1002/pro.437.
5
Structural basis for the diversity of the mechanism of nucleotide hydrolysis by the aminoglycoside-2''-phosphotransferases.
Acta Crystallogr D Struct Biol. 2019 Dec 1;75(Pt 12):1129-1137. doi: 10.1107/S2059798319015079. Epub 2019 Nov 29.
8
Novel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen.
Antimicrob Agents Chemother. 2013 Jan;57(1):452-7. doi: 10.1128/AAC.02049-12. Epub 2012 Nov 5.
9
Bulky "gatekeeper" residue changes the cosubstrate specificity of aminoglycoside 2''-phosphotransferase IIa.
Antimicrob Agents Chemother. 2013 Aug;57(8):3763-6. doi: 10.1128/AAC.00381-13. Epub 2013 May 28.
10
Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study.
Biochim Biophys Acta. 2016 Apr;1860(4):802-13. doi: 10.1016/j.bbagen.2016.01.016. Epub 2016 Jan 21.

引用本文的文献

1
APH Inhibitors that Reverse Aminoglycoside Resistance in Enterococcus casseliflavus.
ChemMedChem. 2025 Apr 14;20(8):e202400842. doi: 10.1002/cmdc.202400842. Epub 2025 Jan 26.
3
Restoring susceptibility to aminoglycosides: identifying small molecule inhibitors of enzymatic inactivation.
RSC Med Chem. 2023 Jul 21;14(9):1591-1602. doi: 10.1039/d3md00226h. eCollection 2023 Sep 19.
4
Structural basis for the diversity of the mechanism of nucleotide hydrolysis by the aminoglycoside-2''-phosphotransferases.
Acta Crystallogr D Struct Biol. 2019 Dec 1;75(Pt 12):1129-1137. doi: 10.1107/S2059798319015079. Epub 2019 Nov 29.
6
Role of protein kinase CK2 in antitumor drug resistance.
J Exp Clin Cancer Res. 2019 Jul 5;38(1):287. doi: 10.1186/s13046-019-1292-y.
7
Look and Outlook on Enzyme-Mediated Macrolide Resistance.
Front Microbiol. 2018 Aug 20;9:1942. doi: 10.3389/fmicb.2018.01942. eCollection 2018.
8
Nucleoside triphosphate cosubstrates control the substrate profile and efficiency of aminoglycoside 3'--phosphotransferase type IIa.
Medchemcomm. 2018 Jul 16;9(8):1332-1339. doi: 10.1039/c8md00234g. eCollection 2018 Aug 1.
9
Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study.
Biochim Biophys Acta. 2016 Apr;1860(4):802-13. doi: 10.1016/j.bbagen.2016.01.016. Epub 2016 Jan 21.

本文引用的文献

1
Processing of X-ray diffraction data collected in oscillation mode.
Methods Enzymol. 1997;276:307-26. doi: 10.1016/S0076-6879(97)76066-X.
2
A small molecule discrimination map of the antibiotic resistance kinome.
Chem Biol. 2011 Dec 23;18(12):1591-601. doi: 10.1016/j.chembiol.2011.10.018.
5
Crystal structures of two aminoglycoside kinases bound with a eukaryotic protein kinase inhibitor.
PLoS One. 2011 May 9;6(5):e19589. doi: 10.1371/journal.pone.0019589.
6
Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2''-IVa.
Protein Sci. 2010 Aug;19(8):1565-76. doi: 10.1002/pro.437.
7
Features and development of Coot.
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501. doi: 10.1107/S0907444910007493. Epub 2010 Mar 24.
8
Nucleotide selectivity of antibiotic kinases.
Antimicrob Agents Chemother. 2010 May;54(5):1909-13. doi: 10.1128/AAC.01570-09. Epub 2010 Mar 15.
9
Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila.
J Biol Chem. 2010 Mar 26;285(13):9545-9555. doi: 10.1074/jbc.M109.038364. Epub 2010 Jan 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验