Suppr超能文献

氨基糖苷-2''-磷酸转移酶催化核苷酸水解机制多样性的结构基础。

Structural basis for the diversity of the mechanism of nucleotide hydrolysis by the aminoglycoside-2''-phosphotransferases.

机构信息

Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA.

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.

出版信息

Acta Crystallogr D Struct Biol. 2019 Dec 1;75(Pt 12):1129-1137. doi: 10.1107/S2059798319015079. Epub 2019 Nov 29.

Abstract

Aminoglycoside phosphotransferases (APHs) are one of three families of aminoglycoside-modifying enzymes that confer high-level resistance to the aminoglycoside antibiotics via enzymatic modification. This has now rendered many clinically important drugs almost obsolete. The APHs specifically phosphorylate hydroxyl groups on the aminoglycosides using a nucleotide triphosphate as the phosphate donor. The APH(2'') family comprises four distinct members, isolated primarily from Enterococcus sp., which vary in their substrate specificities and also in their preference for the phosphate donor (ATP or GTP). The structure of the ternary complex of APH(2'')-IIIa with GDP and kanamycin was solved at 1.34 Å resolution and was compared with substrate-bound structures of APH(2'')-Ia, APH(2'')-IIa and APH(2'')-IVa. In contrast to the case for APH(2'')-Ia, where it was proposed that the enzyme-mediated hydrolysis of GTP is regulated by conformational changes in its N-terminal domain upon GTP binding, APH(2'')-IIa, APH(2'')-IIIa and APH(2'')-IVa show no such regulatory mechanism, primarily owing to structural differences in the N-terminal domains of these enzymes.

摘要

氨基糖苷磷酸转移酶(APH)是使氨基糖苷类抗生素产生高水平耐药性的三种氨基糖苷类修饰酶之一,通过酶修饰实现。这使得许多临床重要的药物几乎失效。APH 特异性地使用核苷酸三磷酸作为磷酸供体来磷酸化氨基糖苷上的羟基。APH(2'')家族由四个不同的成员组成,主要从肠球菌属中分离出来,它们在底物特异性和对磷酸供体(ATP 或 GTP)的偏好方面有所不同。APH(2'')-IIIa 与 GDP 和卡那霉素形成的三元复合物的结构在 1.34 Å 分辨率下得到解决,并与 APH(2'')-Ia、APH(2'')-IIa 和 APH(2'')-IVa 的底物结合结构进行了比较。与 APH(2'')-Ia 的情况不同,在 APH(2'')-Ia 中,酶介导的 GTP 水解被认为是通过 GTP 结合时其 N 端结构域的构象变化来调节的,而 APH(2'')-IIa、APH(2'')-IIIa 和 APH(2'')-IVa 则没有这种调节机制,主要是由于这些酶的 N 端结构域存在结构差异。

相似文献

1
Structural basis for the diversity of the mechanism of nucleotide hydrolysis by the aminoglycoside-2''-phosphotransferases.
Acta Crystallogr D Struct Biol. 2019 Dec 1;75(Pt 12):1129-1137. doi: 10.1107/S2059798319015079. Epub 2019 Nov 29.
6
Structure of the antibiotic resistance factor spectinomycin phosphotransferase from Legionella pneumophila.
J Biol Chem. 2010 Mar 26;285(13):9545-9555. doi: 10.1074/jbc.M109.038364. Epub 2010 Jan 19.
7
Structure of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia revealed by crystallographic and small-angle X-ray scattering analysis.
Acta Crystallogr D Biol Crystallogr. 2014 Oct;70(Pt 10):2754-64. doi: 10.1107/S1399004714017635. Epub 2014 Sep 27.
8
Crystal structure and kinetic mechanism of aminoglycoside phosphotransferase-2''-IVa.
Protein Sci. 2010 Aug;19(8):1565-76. doi: 10.1002/pro.437.
9
Bulky "gatekeeper" residue changes the cosubstrate specificity of aminoglycoside 2''-phosphotransferase IIa.
Antimicrob Agents Chemother. 2013 Aug;57(8):3763-6. doi: 10.1128/AAC.00381-13. Epub 2013 May 28.
10
Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2″)-Ia.
Structure. 2016 Jun 7;24(6):935-45. doi: 10.1016/j.str.2016.04.002. Epub 2016 May 5.

引用本文的文献

1
A One Health approach for the genomic characterization of antibiotic-resistant isolates using Nanopore whole-genome sequencing.
Front Microbiol. 2025 Jan 29;16:1540210. doi: 10.3389/fmicb.2025.1540210. eCollection 2025.
4
Virulence and Resistant Traits Associated with Its Permanence in the Hospital Environment.
Antibiotics (Basel). 2022 Jun 26;11(7):857. doi: 10.3390/antibiotics11070857.

本文引用的文献

1
Flipping the Switch "On" for Aminoglycoside-Resistance Enzymes: The Mechanism Is Finally Revealed!
Structure. 2016 Jul 6;24(7):1011-3. doi: 10.1016/j.str.2016.06.006.
2
Antibiotic Binding Drives Catalytic Activation of Aminoglycoside Kinase APH(2″)-Ia.
Structure. 2016 Jun 7;24(6):935-45. doi: 10.1016/j.str.2016.04.002. Epub 2016 May 5.
3
Aminoglycoside binding and catalysis specificity of aminoglycoside 2″-phosphotransferase IVa: A thermodynamic, structural and kinetic study.
Biochim Biophys Acta. 2016 Apr;1860(4):802-13. doi: 10.1016/j.bbagen.2016.01.016. Epub 2016 Jan 21.
4
Structure of the phosphotransferase domain of the bifunctional aminoglycoside-resistance enzyme AAC(6')-Ie-APH(2'')-Ia.
Acta Crystallogr D Biol Crystallogr. 2014 Jun;70(Pt 6):1561-71. doi: 10.1107/S1399004714005331. Epub 2014 May 23.
6
How good are my data and what is the resolution?
Acta Crystallogr D Biol Crystallogr. 2013 Jul;69(Pt 7):1204-14. doi: 10.1107/S0907444913000061. Epub 2013 Jun 13.
8
Novel aminoglycoside 2''-phosphotransferase identified in a gram-negative pathogen.
Antimicrob Agents Chemother. 2013 Jan;57(1):452-7. doi: 10.1128/AAC.02049-12. Epub 2012 Nov 5.
10
Aminoglycoside antibiotics in the 21st century.
ACS Chem Biol. 2013 Jan 18;8(1):105-15. doi: 10.1021/cb3005116. Epub 2012 Nov 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验