Suppr超能文献

纹状体耦合门控奖励预测误差的适应性编码。

Adaptive coding of reward prediction errors is gated by striatal coupling.

机构信息

Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.

出版信息

Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4285-9. doi: 10.1073/pnas.1119969109. Epub 2012 Feb 27.

Abstract

To efficiently represent all of the possible rewards in the world, dopaminergic midbrain neurons dynamically adapt their coding range to the momentarily available rewards. Specifically, these neurons increase their activity for an outcome that is better than expected and decrease it for an outcome worse than expected, independent of the absolute reward magnitude. Although this adaptive coding is well documented, it remains unknown how this rescaling is implemented. To investigate the adaptive coding of prediction errors and its underlying rescaling process, we used human functional magnetic resonance imaging (fMRI) in combination with a reward prediction task that involved different reward magnitudes. We demonstrate that reward prediction errors in the human striatum are expressed according to an adaptive coding scheme. Strikingly, we show that adaptive coding is gated by changes in effective connectivity between the striatum and other reward-sensitive regions, namely the midbrain and the medial prefrontal cortex. Our results provide evidence that striatal prediction errors are normalized by a magnitude-dependent alteration in the interregional connectivity within the brain's reward system.

摘要

为了有效地表示世界上所有可能的奖励,多巴胺能中脑神经元会动态地将其编码范围适应于当前可用的奖励。具体来说,这些神经元会增加对超出预期的结果的活动,减少对低于预期的结果的活动,而与绝对奖励大小无关。尽管这种自适应编码已经得到了很好的证明,但它仍然未知这种缩放是如何实现的。为了研究预测误差的自适应编码及其潜在的缩放过程,我们使用了人类功能磁共振成像(fMRI)结合涉及不同奖励大小的奖励预测任务。我们证明了人类纹状体中的奖励预测误差是根据自适应编码方案来表达的。引人注目的是,我们表明自适应编码是由纹状体和其他奖励敏感区域(即中脑和内侧前额叶皮层)之间的有效连接变化来控制的。我们的结果提供了证据,表明纹状体的预测误差是通过大脑奖励系统内区域间连接的大小依赖性改变来归一化的。

相似文献

1
Adaptive coding of reward prediction errors is gated by striatal coupling.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4285-9. doi: 10.1073/pnas.1119969109. Epub 2012 Feb 27.
2
Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
J Neurosci. 2017 Feb 15;37(7):1708-1720. doi: 10.1523/JNEUROSCI.1979-16.2016.
3
Differential magnitude coding of gains and omitted rewards in the ventral striatum.
Brain Res. 2011 Sep 9;1411:76-86. doi: 10.1016/j.brainres.2011.07.019. Epub 2011 Jul 18.
5
Adaptive Prediction Error Coding in the Human Midbrain and Striatum Facilitates Behavioral Adaptation and Learning Efficiency.
Neuron. 2016 Jun 1;90(5):1127-38. doi: 10.1016/j.neuron.2016.04.019. Epub 2016 May 12.
6
Adaptive coding of reward in schizophrenia, its change over time and relationship to apathy.
Brain. 2024 Jul 5;147(7):2459-2470. doi: 10.1093/brain/awae112.
7
Reduced neural encoding of utility prediction errors in cocaine addiction.
Neuron. 2023 Dec 20;111(24):4058-4070.e6. doi: 10.1016/j.neuron.2023.09.015. Epub 2023 Oct 25.
8
Parametric modulation of reward sequences during a reversal task in ACC and VMPFC but not amygdala and striatum.
Neuroimage. 2016 Dec;143:50-57. doi: 10.1016/j.neuroimage.2016.09.022. Epub 2016 Sep 10.
9
Coding of the long-term value of multiple future rewards in the primate striatum.
J Neurophysiol. 2013 Feb;109(4):1140-51. doi: 10.1152/jn.00289.2012. Epub 2012 Nov 21.
10
Genetic variation in dopaminergic neuromodulation influences the ability to rapidly and flexibly adapt decisions.
Proc Natl Acad Sci U S A. 2009 Oct 20;106(42):17951-6. doi: 10.1073/pnas.0905191106. Epub 2009 Oct 12.

引用本文的文献

2
Adaptive coding of reward in schizophrenia, its change over time and relationship to apathy.
Brain. 2024 Jul 5;147(7):2459-2470. doi: 10.1093/brain/awae112.
3
Beta Oscillations in Monkey Striatum Encode Reward Prediction Error Signals.
J Neurosci. 2023 May 3;43(18):3339-3352. doi: 10.1523/JNEUROSCI.0952-22.2023. Epub 2023 Apr 4.
4
Dopamine blockade impairs the exploration-exploitation trade-off in rats.
Sci Rep. 2019 May 1;9(1):6770. doi: 10.1038/s41598-019-43245-z.
5
How the Level of Reward Awareness Changes the Computational and Electrophysiological Signatures of Reinforcement Learning.
J Neurosci. 2018 Nov 28;38(48):10338-10348. doi: 10.1523/JNEUROSCI.0457-18.2018. Epub 2018 Oct 16.
6
Neural Habituation to Painful Stimuli Is Modulated by Dopamine: Evidence from a Pharmacological fMRI Study.
Front Hum Neurosci. 2017 Dec 21;11:630. doi: 10.3389/fnhum.2017.00630. eCollection 2017.
7
Correlation between Dopamine Transporter Degradation and Striatocortical Network Alteration in Parkinson's Disease.
Front Neurol. 2017 Jul 17;8:323. doi: 10.3389/fneur.2017.00323. eCollection 2017.
8
A neural link between generosity and happiness.
Nat Commun. 2017 Jul 11;8:15964. doi: 10.1038/ncomms15964.
9
Adaptive Value Normalization in the Prefrontal Cortex Is Reduced by Memory Load.
eNeuro. 2017 Apr 27;4(2). doi: 10.1523/ENEURO.0365-17.2017. eCollection 2017 Mar-Apr.
10
Dopamine Modulates Adaptive Prediction Error Coding in the Human Midbrain and Striatum.
J Neurosci. 2017 Feb 15;37(7):1708-1720. doi: 10.1523/JNEUROSCI.1979-16.2016.

本文引用的文献

1
Reward value-based gain control: divisive normalization in parietal cortex.
J Neurosci. 2011 Jul 20;31(29):10627-39. doi: 10.1523/JNEUROSCI.1237-11.2011.
2
Neurobiology of value integration: when value impacts valuation.
J Neurosci. 2011 Jun 22;31(25):9307-14. doi: 10.1523/JNEUROSCI.4973-10.2011.
3
Prefrontal cortex fails to learn from reward prediction errors in alcohol dependence.
J Neurosci. 2010 Jun 2;30(22):7749-53. doi: 10.1523/JNEUROSCI.5587-09.2010.
4
Decoding different roles for vmPFC and dlPFC in multi-attribute decision making.
Neuroimage. 2011 May 15;56(2):709-15. doi: 10.1016/j.neuroimage.2010.05.058. Epub 2010 May 25.
5
A mechanistic account of value computation in the human brain.
Proc Natl Acad Sci U S A. 2010 May 18;107(20):9430-5. doi: 10.1073/pnas.1001732107. Epub 2010 May 3.
6
The neural code of reward anticipation in human orbitofrontal cortex.
Proc Natl Acad Sci U S A. 2010 Mar 30;107(13):6010-5. doi: 10.1073/pnas.0912838107. Epub 2010 Mar 15.
7
A common mechanism for adaptive scaling of reward and novelty.
Hum Brain Mapp. 2010 Sep;31(9):1380-94. doi: 10.1002/hbm.20939.
8
Adaptation of reward sensitivity in orbitofrontal neurons.
J Neurosci. 2010 Jan 13;30(2):534-44. doi: 10.1523/JNEUROSCI.4009-09.2010.
9
Range-adapting representation of economic value in the orbitofrontal cortex.
J Neurosci. 2009 Nov 4;29(44):14004-14. doi: 10.1523/JNEUROSCI.3751-09.2009.
10
Intrinsic functional connectivity as a tool for human connectomics: theory, properties, and optimization.
J Neurophysiol. 2010 Jan;103(1):297-321. doi: 10.1152/jn.00783.2009. Epub 2009 Nov 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验