Department of Education and Psychology, Freie Universität Berlin, 14195 Berlin, Germany.
Proc Natl Acad Sci U S A. 2012 Mar 13;109(11):4285-9. doi: 10.1073/pnas.1119969109. Epub 2012 Feb 27.
To efficiently represent all of the possible rewards in the world, dopaminergic midbrain neurons dynamically adapt their coding range to the momentarily available rewards. Specifically, these neurons increase their activity for an outcome that is better than expected and decrease it for an outcome worse than expected, independent of the absolute reward magnitude. Although this adaptive coding is well documented, it remains unknown how this rescaling is implemented. To investigate the adaptive coding of prediction errors and its underlying rescaling process, we used human functional magnetic resonance imaging (fMRI) in combination with a reward prediction task that involved different reward magnitudes. We demonstrate that reward prediction errors in the human striatum are expressed according to an adaptive coding scheme. Strikingly, we show that adaptive coding is gated by changes in effective connectivity between the striatum and other reward-sensitive regions, namely the midbrain and the medial prefrontal cortex. Our results provide evidence that striatal prediction errors are normalized by a magnitude-dependent alteration in the interregional connectivity within the brain's reward system.
为了有效地表示世界上所有可能的奖励,多巴胺能中脑神经元会动态地将其编码范围适应于当前可用的奖励。具体来说,这些神经元会增加对超出预期的结果的活动,减少对低于预期的结果的活动,而与绝对奖励大小无关。尽管这种自适应编码已经得到了很好的证明,但它仍然未知这种缩放是如何实现的。为了研究预测误差的自适应编码及其潜在的缩放过程,我们使用了人类功能磁共振成像(fMRI)结合涉及不同奖励大小的奖励预测任务。我们证明了人类纹状体中的奖励预测误差是根据自适应编码方案来表达的。引人注目的是,我们表明自适应编码是由纹状体和其他奖励敏感区域(即中脑和内侧前额叶皮层)之间的有效连接变化来控制的。我们的结果提供了证据,表明纹状体的预测误差是通过大脑奖励系统内区域间连接的大小依赖性改变来归一化的。