Centro de Pesquisas Odontológicas, São Leopoldo Mandic, Brazil.
J Prosthodont. 2012 Jun;21(4):304-11. doi: 10.1111/j.1532-849X.2011.00832.x. Epub 2012 Feb 28.
This study used the 3D finite element (FE) method to evaluate the mechanical behavior of a maxillary central incisor with three types of dowels with variable heights of the remaining crown structure, namely 0, 1, and 2 mm.
Based on computed microtomography, nine models of a maxillary central incisor restored with complete ceramic crowns were obtained, with three ferrule heights (0, 1, and 2 mm) and three types of dowels (glass fiber = GFD; nickel-chromium = NiCr; gold alloy = Au), as follows: GFD0--restored with GFD with absence (0 mm) of ferrule; GFD1--similar, with 1 mm ferrule; GFD2--glass fiber with 2 mm ferrule; NiCr0--restored with NiCr alloy dowel with absence (0 mm) of ferrule; NiCr1--similar, with 1 mm ferrule; NiCr2--similar, with 2 mm ferrule; Au0--restored with Au alloy dowel with absence (0 mm) of ferrule; Au1--similar, with 1 mm ferrule; Au2--similar, with 2 mm ferrule. A 180 N distributed load was applied to the lingual aspect of the tooth, at 45° to the tooth long axis. The surface of the periodontal ligament was fixed in the three axes (x = y = z = 0). The maximum principal stress (σ(max)), minimum principal stress (σ(min)), equivalent von Mises (σ(vM)) stress, and shear stress (σ(shear)) were calculated for the remaining crown dentin, root dentin, and dowels using the FE software.
The σ(max) (MPa) in the crown dentin were: GFD0 = 117; NiCr0 = 30; Au0 = 64; GFD1 = 113; NiCr1 = 102; Au1 = 84; GFD2 = 102; NiCr2 = 260; Au2 = 266. The σ(max) (MPa) in the root dentin were: GFD0 = 159; NiCr0 = 151; Au0 = 158; GFD1 = 92; NiCr1 = 60; Au1 = 67; GFD2 = 97; NiCr2 = 87; Au2 = 109.
The maximum stress was found for the NiCr dowel, followed by the Au dowel and GFD; teeth without ferrule are more susceptible to the occurrence of fractures in the apical root third.
本研究采用三维有限元(FE)方法评估三种不同高度剩余冠结构的固位钉对上颌中切牙的力学行为的影响,这三种固位钉分别为:0、1 和 2mm。
基于计算机微断层扫描,获得了 9 个上颌中切牙模型,这些模型均用全陶瓷冠修复,有三种冠桥高度(0、1 和 2mm)和三种类型的固位钉(玻璃纤维=GFD;镍铬=NiCr;金合金=Au),具体如下:GFD0-用无(0mm)颈环的 GFD 修复;GFD1-类似,有 1mm 颈环;GFD2-有 2mm 颈环的玻璃纤维;NiCr0-用无(0mm)颈环的 NiCr 合金固位钉修复;NiCr1-类似,有 1mm 颈环;NiCr2-类似,有 2mm 颈环;Au0-用无(0mm)颈环的 Au 合金固位钉修复;Au1-类似,有 1mm 颈环;Au2-类似,有 2mm 颈环。在牙齿长轴的 45°方向上,向牙齿舌面施加 180N 的分布载荷。牙周膜的表面在三个轴(x=y=z=0)上被固定。使用有限元软件计算剩余牙本质、牙根牙本质和固位钉的最大主应力(σ(max))、最小主应力(σ(min))、等效 von Mises(σ(vM))应力和剪切应力(σ(shear))。
牙本质冠部的 σ(max)(MPa)为:GFD0=117;NiCr0=30;Au0=64;GFD1=113;NiCr1=102;Au1=84;GFD2=102;NiCr2=260;Au2=266。牙本质根部的 σ(max)(MPa)为:GFD0=159;NiCr0=151;Au0=158;GFD1=92;NiCr1=60;Au1=67;GFD2=97;NiCr2=87;Au2=109。
镍铬固位钉的最大应力最高,其次是 Au 固位钉和 GFD;无颈环的牙齿更容易在前牙根尖三分之一处发生骨折。