Neurosciences Group, Weatherall Institute of Molecular Medicine, Headley Way, Oxford OX3 9DS, UK.
Brain. 2012 Apr;135(Pt 4):1070-80. doi: 10.1093/brain/aws016. Epub 2012 Mar 1.
Muscle acetylcholine receptor ion channels mediate neurotransmission by depolarizing the postsynaptic membrane at the neuromuscular junction. Inherited disorders of neuromuscular transmission, termed congenital myasthenic syndromes, are commonly caused by mutations in genes encoding the five subunits of the acetylcholine receptor that severely reduce endplate acetylcholine receptor numbers and/or cause kinetic abnormalities of acetylcholine receptor function. We tracked the cause of the myasthenic disorder in a female with onset of first symptoms at birth, who displayed mildly progressive bulbar, respiratory and generalized limb weakness with ptosis and ophthalmoplegia. Direct DNA sequencing revealed heteroallelic mutations in exon 8 of the acetylcholine receptor ε-subunit gene. Two alleles were identified: one with the missense substitution p.εP282R, and the second with a deletion, c.798_800delCTT, which result in the loss of a single amino acid, residue F266, within the M2 transmembrane domain. When these acetylcholine receptor mutations were expressed in HEK 293 cells, the p.εP282R mutation caused severely reduced expression on the cell surface, whereas p.εΔF266 gave robust surface expression. Single-channel analysis for p.εΔF266 acetylcholine receptor channels showed the longest burst duration population was not different from wild-type acetylcholine receptor (4.39 ± 0.6 ms versus 4.68 ± 0.7 ms, n = 5 each) but that the amplitude of channel openings was reduced. Channel amplitudes at different holding potentials showed that single-channel conductance was significantly reduced in p.εΔF266 acetylcholine receptor channels (42.7 ± 1.4 pS, n = 8, compared with 70.9 ± 1.6 pS for wild-type, n = 6). Although a phenylalanine residue at this position within M2 is conserved throughout ligand-gated excitatory cys-loop channel subunits, deletion of equivalent residues in the other subunits of muscle acetylcholine receptor did not have equivalent effects. Modelling the impact of p.εΔF266 revealed only a minor alteration to channel structure. In this study we uncover the novel mechanism of reduced acetylcholine receptor channel conductance as an underlying cause of congenital myasthenic syndrome, with the 'low conductance' phenotype that results from the p.εΔF266 deletion mutation revealed by the coinheritance of the low-expressor mutation p.εP282R.
肌肉乙酰胆碱受体离子通道通过去极化神经肌肉接头的突触后膜来介导神经递质传递。神经肌肉传递的遗传性疾病,称为先天性肌无力综合征,通常是由编码乙酰胆碱受体五个亚基的基因突变引起的,这些突变严重减少了终板乙酰胆碱受体的数量,并/或导致乙酰胆碱受体功能的动力学异常。我们在一位出生时即出现首发症状的女性中追踪了肌无力障碍的病因,该女性表现为轻度进行性球部、呼吸和全身性肢体无力,伴有上睑下垂和眼肌麻痹。直接 DNA 测序显示乙酰胆碱受体 ε 亚基基因外显子 8 存在杂合突变。鉴定出两种等位基因:一种是错义替换 p.εP282R,另一种是缺失 c.798_800delCTT,导致 M2 跨膜结构域内单个氨基酸残基 F266 的缺失。当这些乙酰胆碱受体突变在 HEK 293 细胞中表达时,p.εP282R 突变导致细胞表面的表达严重减少,而 p.εΔF266 则产生了强大的表面表达。对 p.εΔF266 乙酰胆碱受体通道的单通道分析表明,最长爆发持续时间的群体与野生型乙酰胆碱受体没有不同(4.39±0.6ms 与 4.68±0.7ms,n=5 各),但通道开放的幅度减小。不同的保持电位下的通道幅度表明,p.εΔF266 乙酰胆碱受体通道的单通道电导显著降低(42.7±1.4pS,n=8,与野生型相比,n=6,70.9±1.6pS)。尽管 M2 内该位置的苯丙氨酸残基在配体门控兴奋性 cys-环通道亚基中是保守的,但肌肉乙酰胆碱受体其他亚基中相同残基的缺失并没有产生等效的影响。对 p.εΔF266 的建模揭示了通道结构的微小改变。在这项研究中,我们发现了乙酰胆碱受体通道电导降低的新机制,这是先天性肌无力综合征的潜在原因,其“低电导”表型是由 p.εΔF266 缺失突变与低表达突变 p.εP282R 的共同遗传所导致。