Gomez Christopher M, Maselli Ricardo A, Vohra Bhupinder P S, Navedo Manuel, Stiles Joel R, Charnet Pierre, Schott Kelly, Rojas Legier, Keesey John, Verity Anthony, Wollmann Robert W, Lasalde-Dominicci Jose
Department of Neurology, University of Minnesota, Minneapolis, MN 55455, USA.
Ann Neurol. 2002 Jan;51(1):102-12. doi: 10.1002/ana.10077.
We investigated the basis for a novel form of the slow-channel congenital myasthenic syndrome presenting in infancy in a single individual as progressive weakness and impaired neuromuscular transmission without overt degeneration of the motor endplate. Prolonged low-amplitude synaptic currents in biopsied anconeus muscle at 9 years of age suggested a kinetic disorder of the muscle acetylcholine receptor. Ultrastructural studies at 16 months, at 9 years, and at 15 years of age showed none of the typical degenerative changes of the endplate associated with the slow-channel congenital myasthenic syndrome, and acetylcholine receptor numbers were not significantly reduced. We identified a novel C-to-T substitution in exon 8 of the delta-subunit that results in a serine to phenylalanine mutation in the region encoding the second transmembrane domain that lines the ion channel. Using Xenopus oocyte in vitro expression studies we confirmed that the deltaS268F mutation, as with other slow-channel congenital myasthenic syndrome mutations, causes delayed closure of acetylcholine receptor ion channels. In addition, unlike other mutations in slow-channel congenital myasthenic syndrome, this mutation also causes delayed opening of the channel, a finding that readily explains the marked congenital weakness in the absence of endplate degeneration. Finally, we used serial morphometric analysis of electron micrographs to explore the basis for the progressive weakness and decline of amplitude of endplate currents over a period of 14 years. We demonstrated a progressive widening and accumulation of debris in the synaptic cleft, resulting in loss of efficacy of released neurotransmitter and reduced safety factor. These studies demonstrate the role of previously unrecognized mechanisms of impairment of synaptic transmission caused by a novel mutation and show the importance of serial in vitro studies to elucidate novel disease mechanisms.
我们对一名婴儿期出现的新型慢通道先天性肌无力综合征的发病基础进行了研究。该患儿表现为进行性肌无力和神经肌肉传递受损,而运动终板无明显退变。9岁时对活检的肘肌进行研究,发现突触电流低幅延长,提示肌肉乙酰胆碱受体存在动力学紊乱。在16个月、9岁和15岁时进行的超微结构研究显示,均未发现与慢通道先天性肌无力综合征相关的典型终板退变改变,且乙酰胆碱受体数量未显著减少。我们在δ亚基的第8外显子中发现了一个新的C到T替换,该替换导致在编码离子通道内衬的第二个跨膜结构域的区域发生丝氨酸到苯丙氨酸的突变。通过非洲爪蟾卵母细胞体外表达研究,我们证实δS268F突变与其他慢通道先天性肌无力综合征突变一样,会导致乙酰胆碱受体离子通道关闭延迟。此外,与慢通道先天性肌无力综合征的其他突变不同,该突变还会导致通道开放延迟,这一发现很容易解释在没有终板退变的情况下出现的明显先天性肌无力。最后,我们使用电子显微镜照片的系列形态计量分析来探究14年间进行性肌无力和终板电流幅度下降的原因。我们证明了突触间隙逐渐增宽和碎片堆积,导致释放的神经递质效能丧失和安全系数降低。这些研究证明了由一种新突变引起的先前未被认识的突触传递受损机制的作用,并显示了系列体外研究对阐明新疾病机制的重要性。