自动化提醒可降低普通外科人群术后恶心和呕吐的发生率。

Automated reminders decrease postoperative nausea and vomiting incidence in a general surgical population.

机构信息

Academic Medical Center, Department of Anesthesiology, PO Box 22660, 1100 DD Amsterdam, The Netherlands.

出版信息

Br J Anaesth. 2012 Jun;108(6):961-5. doi: 10.1093/bja/aes024. Epub 2012 Feb 29.

Abstract

BACKGROUND

Guidelines to minimize the incidence of postoperative nausea and vomiting (PONV) have been implemented in many hospitals. In previous studies, we have demonstrated that guideline adherence is suboptimal and can be improved using decision support (DS). In this study, we investigate whether DS improves patient outcome through improving physician behaviour.

METHODS

Medical information of surgical patients is routinely entered in our anaesthesia information management system (AIMS), which includes automated reminders for PONV management based on the simplified risk score by Apfel and colleagues. This study included consecutive adult patients undergoing general anaesthesia for elective non-cardiac surgery who were treated according to the normal clinical routine. The presence of PONV was recorded in the AIMS both during the recovery period and at 24 h. Two periods were studied: one without the use of DS (control period) and one with the use of DS (support period). DS consisted of reminders on PONV both in the preoperative screening clinic and at the time of anaesthesia.

RESULTS

In the control period, 981 patients, of whom 378 (29%) were high-risk patients, received general anaesthesia. Overall, 264 (27%) patients experienced PONV within 24 h. In the support period, 1681 patients, of whom 525 (32%) had a high risk for PONV, received general anaesthesia. In this period, only 378 (23%) patients experienced PONV within 24 h after operation. This difference is statistically significant (P=0.01).

CONCLUSION

Automated reminders can improve patient outcome by improving guideline adherence.

摘要

背景

许多医院已经实施了指南以尽量减少术后恶心和呕吐(PONV)的发生率。在之前的研究中,我们已经证明指南的遵循情况并不理想,可以通过决策支持(DS)来改善。在这项研究中,我们研究了 DS 是否通过改善医生的行为来改善患者的结果。

方法

我们的麻醉信息管理系统(AIMS)会常规输入手术患者的医疗信息,该系统包括基于 Apfel 等人简化风险评分的 PONV 管理的自动提醒。这项研究包括接受全身麻醉进行择期非心脏手术的连续成年患者,他们根据正常的临床常规进行治疗。在恢复期间和 24 小时后,AIMS 中均记录了 PONV 的存在。研究了两个时期:一个是不使用 DS 的时期(对照期),另一个是使用 DS 的时期(支持期)。DS 包括在术前筛查诊所和麻醉时对 PONV 的提醒。

结果

在对照期,981 名患者接受全身麻醉,其中 378 名(29%)为高危患者。总体而言,264 名(27%)患者在 24 小时内发生 PONV。在支持期,1681 名患者接受全身麻醉,其中 525 名(32%)有发生 PONV 的高风险。在此期间,只有 378 名(23%)患者在手术后 24 小时内发生 PONV。这一差异具有统计学意义(P=0.01)。

结论

自动提醒可以通过提高指南的遵循来改善患者的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索