Suppr超能文献

遗传消除肝细胞增殖会激活肝干细胞。

Genetic abolishment of hepatocyte proliferation activates hepatic stem cells.

机构信息

Signal Transduction Program, Sanford-Burnham Medical Research Institute, La Jolla, California, United States of America.

出版信息

PLoS One. 2012;7(2):e31846. doi: 10.1371/journal.pone.0031846. Epub 2012 Feb 23.

Abstract

Quiescent hepatic stem cells (HSCs) can be activated when hepatocyte proliferation is compromised. Chemical injury rodent models have been widely used to study the localization, biomarkers, and signaling pathways in HSCs, but these models usually exhibit severe promiscuous toxicity and fail to distinguish damaged and non-damaged cells. Our goal is to establish new animal models to overcome these limitations, thereby providing new insights into HSC biology and application. We generated mutant mice with constitutive or inducible deletion of Damaged DNA Binding protein 1 (DDB1), an E3 ubiquitin ligase, in hepatocytes. We characterized the molecular mechanism underlying the compensatory activation and the properties of oval cells (OCs) by methods of mouse genetics, immuno-staining, cell transplantation and gene expression profiling. We show that deletion of DDB1 abolishes self-renewal capacity of mouse hepatocytes in vivo, leading to compensatory activation and proliferation of DDB1-expressing OCs. Partially restoring proliferation of DDB1-deficient hepatocytes by ablation of p21, a substrate of DDB1 E3 ligase, alleviates OC proliferation. Purified OCs express both hepatocyte and cholangiocyte markers, form colonies in vitro, and differentiate to hepatocytes after transplantation. Importantly, the DDB1 mutant mice exhibit very minor liver damage, compared to a chemical injury model. Microarray analysis reveals several previously unrecognized markers, including Reelin, enriched in oval cells. Here we report a genetic model in which irreversible inhibition of hepatocyte duplication results in HSC-driven liver regeneration. The DDB1 mutant mice can be broadly applied to studies of HSC differentiation, HSC niche and HSCs as origin of liver cancer.

摘要

静止的肝干细胞(HSCs)在肝细胞增殖受损时可以被激活。化学损伤啮齿动物模型已被广泛用于研究 HSCs 的定位、生物标志物和信号通路,但这些模型通常表现出严重的混杂毒性,无法区分受损和未受损的细胞。我们的目标是建立新的动物模型来克服这些限制,从而为 HSC 生物学和应用提供新的见解。我们通过在肝细胞中组成型或诱导型缺失 Damaged DNA Binding protein 1(DDB1),一种 E3 泛素连接酶,生成了突变小鼠。我们通过小鼠遗传学、免疫染色、细胞移植和基因表达谱分析等方法,研究了补偿性激活的分子机制和卵圆细胞(OCs)的特性。我们表明,DDB1 的缺失会在体内消除小鼠肝细胞的自我更新能力,导致 DDB1 表达的 OCs 的代偿性激活和增殖。通过消融 DDB1 E3 连接酶的底物 p21 部分恢复 DDB1 缺陷型肝细胞的增殖,可减轻 OC 增殖。纯化的 OCs 表达肝和胆管细胞标志物,在体外形成集落,并在移植后分化为肝细胞。重要的是,与化学损伤模型相比,DDB1 突变小鼠的肝损伤很小。微阵列分析揭示了几个以前未被识别的标记物,包括 Reelin,在卵圆细胞中富集。在这里,我们报告了一种遗传模型,其中不可逆地抑制肝细胞复制会导致 HSC 驱动的肝再生。DDB1 突变小鼠可广泛应用于 HSC 分化、HSC 生态位和 HSCs 作为肝癌起源的研究。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/400f/3285627/6fd240695867/pone.0031846.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验