Suppr超能文献

一种适用于神经形态实现的基于预测的 STDP 规则。

A forecast-based STDP rule suitable for neuromorphic implementation.

机构信息

School of Computer Science, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom.

出版信息

Neural Netw. 2012 Aug;32:3-14. doi: 10.1016/j.neunet.2012.02.018. Epub 2012 Feb 14.

Abstract

Artificial neural networks increasingly involve spiking dynamics to permit greater computational efficiency. This becomes especially attractive for on-chip implementation using dedicated neuromorphic hardware. However, both spiking neural networks and neuromorphic hardware have historically found difficulties in implementing efficient, effective learning rules. The best-known spiking neural network learning paradigm is Spike Timing Dependent Plasticity (STDP) which adjusts the strength of a connection in response to the time difference between the pre- and post-synaptic spikes. Approaches that relate learning features to the membrane potential of the post-synaptic neuron have emerged as possible alternatives to the more common STDP rule, with various implementations and approximations. Here we use a new type of neuromorphic hardware, SpiNNaker, which represents the flexible "neuromimetic" architecture, to demonstrate a new approach to this problem. Based on the standard STDP algorithm with modifications and approximations, a new rule, called STDP TTS (Time-To-Spike) relates the membrane potential with the Long Term Potentiation (LTP) part of the basic STDP rule. Meanwhile, we use the standard STDP rule for the Long Term Depression (LTD) part of the algorithm. We show that on the basis of the membrane potential it is possible to make a statistical prediction of the time needed by the neuron to reach the threshold, and therefore the LTP part of the STDP algorithm can be triggered when the neuron receives a spike. In our system these approximations allow efficient memory access, reducing the overall computational time and the memory bandwidth required. The improvements here presented are significant for real-time applications such as the ones for which the SpiNNaker system has been designed. We present simulation results that show the efficacy of this algorithm using one or more input patterns repeated over the whole time of the simulation. On-chip results show that the STDP TTS algorithm allows the neural network to adapt and detect the incoming pattern with improvements both in the reliability of, and the time required for, consistent output. Through the approximations we suggest in this paper, we introduce a learning rule that is easy to implement both in event-driven simulators and in dedicated hardware, reducing computational complexity relative to the standard STDP rule. Such a rule offers a promising solution, complementary to standard STDP evaluation algorithms, for real-time learning using spiking neural networks in time-critical applications.

摘要

人工神经网络越来越多地涉及尖峰动力学,以提高计算效率。这对于使用专用神经形态硬件在片上实现特别有吸引力。然而,尖峰神经网络和神经形态硬件在实现高效、有效的学习规则方面一直存在困难。最著名的尖峰神经网络学习范例是尖峰时间依赖性可塑性(STDP),它根据前突触和后突触尖峰之间的时间差调整连接的强度。与更常见的 STDP 规则相比,将学习特征与后突触神经元的膜电位相关联的方法已经出现,并且有各种实现和近似方法。在这里,我们使用一种新型的神经形态硬件 SpiNNaker,它代表了灵活的“神经拟态”架构,来展示这个问题的一种新方法。基于带有修改和近似的标准 STDP 算法,一种新的规则,称为 STDP TTS(时间到尖峰),将膜电位与基本 STDP 规则的长时程增强(LTP)部分相关联。同时,我们在算法的长时程抑制(LTD)部分使用标准 STDP 规则。我们表明,基于膜电位,可以对神经元达到阈值所需的时间进行统计预测,因此当神经元接收到尖峰时,可以触发 STDP 算法的 LTP 部分。在我们的系统中,这些近似允许高效的内存访问,减少了整体计算时间和所需的内存带宽。这些改进对于实时应用程序非常重要,例如 SpiNNaker 系统设计的应用程序。我们展示了使用一种或多种输入模式在整个仿真时间内重复的仿真结果,表明了该算法的有效性。片上结果表明,STDP TTS 算法允许神经网络自适应并检测输入模式,从而提高一致输出的可靠性和所需时间。通过本文中提出的近似方法,我们引入了一种学习规则,它既易于在事件驱动的模拟器中实现,也易于在专用硬件中实现,与标准 STDP 规则相比,降低了计算复杂度。对于在时间关键型应用中使用尖峰神经网络进行实时学习,这种规则是一种很有前途的解决方案,它是标准 STDP 评估算法的补充。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验