Center for Lung Biology, Department of Biochemistry, University of South Alabama, 5851 USA Dr. N., Mobile, AL 36688, USA.
Am J Physiol Lung Cell Mol Physiol. 2012 May 15;302(10):L1067-77. doi: 10.1152/ajplung.00190.2011. Epub 2012 Mar 2.
The surface of vascular endothelium bears a glycocalyx comprised, in part, of a complex mixture of oligosaccharide chains attached to cell-surface proteins and membrane lipids. Importantly, understanding of the structure and function of the endothelial glycocalyx is poorly understood. Preliminary studies have demonstrated structural differences in the glycocalyx of pulmonary artery endothelial cells compared with pulmonary microvascular endothelial cells. Herein we begin to probe in more detail structural and functional attributes of endothelial cell-surface carbohydrates. In this study we focus on the expression and function of sialic acids in pulmonary endothelium. We observed that, although pulmonary microvascular endothelial cells express similar amounts of total sialic acids as pulmonary artery endothelial cells, the nature of the sialic acid linkages differs between the two cell types such that pulmonary artery endothelial cells express both α(2,3)- and α(2,6)-linked sialic acids on the surface (i.e., surficially), whereas microvascular endothelial cells principally express α(2,3)-linked sialic acids. To determine whether sialic acids play a role in endothelial barrier function, cells were treated with neuraminidases to hydrolyze sialic acid moieties. Disruption of cell-cell and cell-matrix adhesions was observed following neuraminidase treatment, suggesting that terminal sialic acids promote endothelial barrier integrity. When we measured transendothelial resistance, differential responses of pulmonary artery and microvascular endothelial cells to neuraminidase from Clostridium perfringens suggest that the molecular architecture of the sialic acid glycomes differs between these two cell types. Collectively our observations reveal critical structural and functional differences of terminally linked sialic acids on the pulmonary endothelium.
血管内皮细胞的表面带有糖萼,部分由附着在细胞表面蛋白和膜脂质上的复杂寡糖链混合物组成。重要的是,人们对内皮糖萼的结构和功能的理解还很有限。初步研究表明,肺动脉内皮细胞和肺微血管内皮细胞的糖萼结构存在差异。在此,我们开始更详细地研究内皮细胞表面碳水化合物的结构和功能特性。在这项研究中,我们专注于肺部内皮细胞中唾液酸的表达和功能。我们观察到,尽管肺微血管内皮细胞表达的总唾液酸量与肺动脉内皮细胞相似,但两种细胞类型的唾液酸键合性质不同,使得肺动脉内皮细胞在表面(即表面)表达α(2,3)-和α(2,6)-连接的唾液酸,而微血管内皮细胞主要表达α(2,3)-连接的唾液酸。为了确定唾液酸是否在血管内皮屏障功能中发挥作用,我们用神经氨酸酶处理细胞以水解唾液酸部分。神经氨酸酶处理后观察到细胞-细胞和细胞-基质黏附的破坏,表明末端唾液酸促进内皮屏障完整性。当我们测量跨内皮电阻时,产气荚膜梭菌神经氨酸酶对肺动脉和微血管内皮细胞的不同反应表明,这两种细胞类型的唾液酸聚糖的分子结构不同。总之,我们的观察结果揭示了肺部内皮细胞末端连接的唾液酸的关键结构和功能差异。