Department of Molecular Biology, MB4, The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
J Mol Biol. 2012 May 25;419(1-2):110-24. doi: 10.1016/j.jmb.2012.02.041. Epub 2012 Mar 1.
Type IV pili (T4Ps) are long cell surface filaments, essential for microcolony formation, tissue adherence, motility, transformation, and virulence by human pathogens. The enteropathogenic Escherichia coli bundle-forming pilus is a prototypic T4P assembled and powered by BfpD, a conserved GspE secretion superfamily ATPase held by inner-membrane proteins BfpC and BfpE, a GspF-family membrane protein. Although the T4P assembly machinery shares similarity with type II secretion (T2S) systems, the structural biochemistry of the T4P machine has been obscure. Here, we report the crystal structure of the two-domain BfpC cytoplasmic region (N-BfpC), responsible for binding to ATPase BfpD and membrane protein BfpE. The N-BfpC structure reveals a prominent central cleft between two α/β-domains. Despite negligible sequence similarity, N-BfpC resembles PilM, a cytoplasmic T4P biogenesis protein. Yet surprisingly, N-BfpC has far greater structural similarity to T2S component EpsL, with which it also shares virtually no sequence identity. The C-terminus of the cytoplasmic domain, which leads to the transmembrane segment not present in the crystal structure, exits N-BfpC at a positively charged surface that most likely interacts with the inner membrane, positioning its central cleft for interactions with other Bfp components. Point mutations in surface-exposed N-BfpC residues predicted to be critical for interactions among BfpC, BfpE, and BfpD disrupt pilus biogenesis without precluding interactions with BfpE and BfpD and without affecting BfpD ATPase activity. These results illuminate the relationships between T4P biogenesis and T2S systems, imply that subtle changes in component residue interactions can have profound effects on function and pathogenesis, and suggest that T4P systems may be disrupted by inhibitors that do not preclude component assembly.
IV 型菌毛(T4P)是长的细胞表面丝,对于微菌落形成、组织黏附、运动、转化和人类病原体的毒力至关重要。肠致病性大肠杆菌束形成菌毛是一种典型的 T4P,由 BfpD 组装和提供动力,BfpD 是一种保守的 GspE 分泌超家族 ATP 酶,由内膜蛋白 BfpC 和 BfpE、GspF 家族膜蛋白持有。尽管 T4P 组装机制与 II 型分泌(T2S)系统具有相似性,但 T4P 机器的结构生物化学一直不清楚。在这里,我们报告了两个结构域的 BfpC 细胞质区域(N-BfpC)的晶体结构,该区域负责与 ATP 酶 BfpD 和膜蛋白 BfpE 结合。N-BfpC 结构揭示了两个α/β 结构域之间的一个明显的中央裂缝。尽管序列相似性微不足道,但 N-BfpC 类似于细胞质 T4P 生物发生蛋白 PilM。然而,令人惊讶的是,N-BfpC 与 T2S 成分 EpsL 具有惊人的结构相似性,它们几乎没有序列同一性。细胞质结构域的 C 末端,在晶体结构中不存在跨膜段,从 N-BfpC 离开,位于一个带正电荷的表面,该表面很可能与内膜相互作用,使中央裂缝能够与其他 Bfp 成分相互作用。表面暴露的 N-BfpC 残基的点突变预测对 BfpC、BfpE 和 BfpD 之间的相互作用至关重要,这些突变破坏了菌毛的生物发生,而不排除与 BfpE 和 BfpD 的相互作用,也不影响 BfpD ATP 酶活性。这些结果阐明了 T4P 生物发生和 T2S 系统之间的关系,暗示了组成成分相互作用的微小变化可能对功能和发病机制产生深远影响,并表明 T4P 系统可能被不排除成分组装的抑制剂破坏。